
Isolation and Flow of Information
CMMRS 2019 (2/3)

Saarbrucken, Germany
August 2019

Fred B. Schneider
Samuel B Eckert Professor of Computer Science

Department of Computer Science
Cornell University

Ithaca, New York 14853
U.S.A.

Security Trade-offs: Inconvenience

Approaches to enforcement:
– Monitoring.

§ Authenticate source of each request
§ Use context of past action to block future violations
Inconvenience: Authentication of users,
authentication of programs, limitations on flexibility

– Isolation.
§ Keep attackers out or keep attackers in.
Inconvenience: Blocks communications between
programs.

1

Security Trade-offs: Values

Enforcement can be in conflict with
– Privacy
– Openness
– Freedom of expression
– Opportunity to innovate
– Access to information

Values differ across jurisdictions in Internet.

2

Build on the Past?

Flawed analogies lead to flawed interventions.
– Liability lawsuits
– Insurance to limit exposure (and transfer risk)
– Deterrence through accountability

3

Flawed Analogies: Liability

Basis: Comparison of observed performance
with some basis for acceptable behavior.

– Need a specification
§ Expensive to produce
§ Limits extension (functionality or environment)
§ Weak specifications do not rule out attacks.
§ Strong specifications rule out re-purposing

4

Flawed Analogies: Insurance

Basis: Data about past incidents and
payouts used to predict future payouts (and
determine price).

– Software evolution is discontinuous
– Changes to environment are uncontrolled by

user, developer, insurer.

5

Flawed Analogies: Deterrence

Basis: Identify attackers and punish them.
– Attribution of cyber-attacks difficult
– Jurisdiction of attacker might not be willing to

help.

Balkanize the Internet into regions of
cooperation delimited by monitoring?

6

7

Packaging to Create Incentives

Cybersecurity doctrine:
● Goals define

– kinds and levels of cybersecurity sought
– acceptable trade-offs and costs.

● Means include
– Technical / education / regulation

§ Incentives: market-based to coercive

A lens for viewing policy proposals.

8

Early Doctrine:
Doctrine of Prevention

Build systems that don’t have vulns.
– Unworkable:

§ Big systems are too complicated to get right.
§ Formal verification infeasible
§ Exhaustive testing infeasible
§ Performance standards would require security metrics.

– Incomplete:
§ Ignores users and operators (“social engineering”)
§ Environment not static (attacks, assumptions, uses)

• Specifications must evolve
• Assurance argument must be reconstructed

9

Early Doctrine:
Doctrine of Risk Management 1

Invest in security to reduce expected
losses due to attacks.

§ Cost of attack
– What is value of confidentiality? Integrity?
– What is the cost of recovery from attack?
– What about costs to third parties?

§ Probability of attack
– Insufficient data about threats and vulns.

10

Early Doctrine:
Doctrine of Risk Management 2

§ Under-investment is rational.
– Individuals cannot:

§ reap full benefit from their investments.
§ cannot control vulns.

– No metrics to predict ROI
– Insufficient data about threats, vulns, and cost of

losses
– Continuing investments would be needed

§ Threats co-evolve with defenses
§ Replacement systems and upgrades constantly deployed
§ New domains mean new forms of security needed.

11

Recent Doctrine:
Doctrine of Accountability

Deter attacks through threats of
retribution.
– Retrospective and punitive

§ No concern about keeping systems up and running.
– Attribution of action is often infeasible.

§ Cross border enforcement?
§ Non-state actors?
§ Binding of machines to individuals is weak.

– Incomplete:
§ Narrow set of policy options for privacy.
§ Presumes attacks are crimes.

12

Toward a New Doctrine:

Public Goods

Thesis: Cybersecurity is a public good.
§ Non-rivalrous: Consumption of the good by one individual does

not reduce availability for consumption by others.
§ Non-excludable: No individual can be excluded from having

access to the good.

“Public health” is a public good, too…

13

Public Health?

… duties and power of the state to assure health of
the population (not individual) and limitations on
that power to protect the interests of individuals.

§ Herd immunity vs individual vaccination risk
§ Stem an epidemic vs individual privacy
§ Incentives vs externalities

14

Doctrine for Public Health

Goals: Prompt production
Manage its absence

Means: Education, prevention, surveillance,
containment (quarantine), diversity, mitigation,
recovery.

§ Eschew: punishment, compensation, restitution

Requires new research and always will.
– Pathogens evolve.
– Expectations and health needs grow.

15

Public Health à Public Cybersecurity

§ Network: people à computers (+ people)
§ Positive state: health à cybersecurity

– Produce: health à produce cybersecurity
– Manage: disease à manage insecurity (vulns)

Doctrine(s) of Public Cybersecurity:
Prompt the production of cybersecurity.
Manage the remaining insecurity.
Political agreement to balance individual

rights and public welfare

16

Public Health à Public Cybersecurity

§ Network: people à computers (+ people)
§ Positive state: health à cybersecurity

– Produce: health à produce cybersecurity
– Manage: disease à manage insecurity (vulns)

Doctrine(s) of Public Cybersecurity:
§ Prompt the production of cybersecurity.
§ Manage the remaining insecurity.
§ Political agreement to balance individual

rights and public welfare

17

Public Cybersecurity Mechanisms

● Produce Security

● Manage insecurity
– Diversity (obfuscation/randomization)
– Monitoring

§ Boundary traffic-monitoring (firewalls, Einstein)
§ Mandate ISP coordination

– Patching (cost subsidy, injured party comps)
– Isolation (vs encryption, vs censorship)
– Intermediaries (ISP’s)

18

Important Metaphors

● Cyber-attacks as crime
– Deterrence through Accountability

● Cyber-attacks as disease
– Public Cybersecurity

● Cyber-attacks as warfare
– ???

One defense suffices: Avoid vulnerabilities.

1919

For additional information

Doctrine for Cybersecurity Deirdre K. Mulligan and Fred B.
Schneider. In Daedalus, Journal of the American Academy of Arts &
Sciences, Fall 2011 (“Protecting the Internet as a Public Commons”,
eds. David D. Clark and John B. Horrigan). Pages 70-92.

Impediments with Policy Interventions to Foster Cybersecurity
Investment Fred B. Schneider. Communications of the ACM Vol 61,
No. 3 (March 2018), 38—38.

Produce Security:
Enforcement Strategies

● Isolation
● Monitoring
● Recovery
● Asymmetric Computation

20

Walls Enforce Isolation

● Prison walls: Keep people in.
● Fortress walls: Keep people out.
● Windows/doors allow activities on one

side to influence the other side.
– Holes degrade isolation.
– Holes are not always apparent.

§ acoustic, energy, timing

21

Isolation in computing systems

Allows stronger assumptions about a component’s
environment: less need to trust the environment.

– Restrict environment form changing component’s state
§ Protects integrity

– Restrict environment from influence by component
§ Protects confidentiality of sys state

22

Units of Isolation

● Physical isolation
● Processes and virtual machines

– Mapping
– Time multiplexing

● Measured principals
– Cryptography

23

Mapping for Isolation

Environment for a process:
– Instruction set. Uses “names” for variables.
– Memory. Associates values with names.

Idea: Interpose per-process mappings map.P:
map.P: names à values

by loading register MR with map.P.
Enforce disjoint ranges for mappings.

24

Process Switch = Mapping Switch

While executing P: MR = map.P
To start executing Q: MR := map.Q
Implementation details

– Map.P implemented by pairs { … <n, addr> … }
§ Limit possible mappings to enable smaller tables

• <n, lim, addr> maps: n+A to addr+A if A < lim
§ Only “trusted” software executes “MR := … “

• Impl by having processor modes: system versus user
• Only trusted software executes in system mode.

25

Time multiplexing for isolation

Interposition of mapping not always available.

From time t to t’: P has exclusive access to r.
Otherwise: state of resource r saved for P in R[P]

Transitions:
– Instructions to cause: r := R[P] or R[P] := r
– Interrupt to cause: R[P] := r

26

Isolation by Cryptography

● Encryption can enforce confidentiality
● Digital signatures can restrict updates.

– N.b. Unauthorized writes destroy availability

But need protection for cryptographic keys! Soln:
– Generate and store keys in special registers.

§ Assumes tamper-proof hardware
– Execute cryptographic functions in hardware.
– Control access to cryptographic functions.

27

Measured Principals

Abstractions used in TPM, SGX, …

Measured Principal: Properties of its execution
can be deduced from it’s name. Name is basis for
trust. Name is not just aspirational: “Windows 9”

Gating Function: K-F(…) is instantiated with a
fixed config constraint C(K,F)---a set of names of
measured prins allowed access. K is a key. F is a
cryptographic function.

28

Names from Descriptions

N(D) is name inextricably linked to a description D
– D = <d1, d2, … dn> gives descriptors di (in order

accessed for resources.
§ Each di depends on state and capabilities of resource.

– D allows predictions of what N(D) does.
– Modified description D’ gives modified name N(D’)

§ Gating functions deny accesses by modified name.
• Patches and revision?
• Access linked to initial state, not current state of resource.

29

Properties of Names

Prevent attackers from computing specific names.
= Prevent attackers from getting access to a gating function.

Name N(D) for measured principal should satisfy:
– ¬(D = D’) implies ¬(N(D) = N(D’))
– Infeasible to construct D’ where

§ ¬(D = D’) and N(D) = N(D’)

30

Names as Hashes

Hashes have the required properties.
hc:= 0
for i := 1 to n

hc := Hash(hc ⌻ Hash(di))

Hashes can be computed incrementally
– Next resource computed during execution
– Past resources deleted (as in boot)

31

Descriptor Details

Descriptor should depend on contributions of
resource to execution semantics for measured
principal.

– Need: Equality test for descriptor vs resource
– Need: Equality implies equivalent behavior.
– Do not need: Transparency or property inference.

Might also have “hint” to identify actual resource
to analyze for comparison.

32

Descriptors for Storage

Depends on values stored:

< dev,
strt, fin,
H(dev[strt] , dev[strt+1] … dev[fin] >

33

Descriptors for Interpreters

Implemented in software: Use descriptor for
storage containing interpreter.

Implemented in hardware: Need unique id.
HW cannot reveal id or else impersonation
becomes possible using VMM.

34

Descriptors for HW Processors

● HW instance id has unique (private) signing key k.id
● HW has instruction to produce signature with k.id
● Verification (public) key K.id:

§ K.id used as that name of processor
§ HW read-only register could contains K.id
§ Certificate:

Intel says K.id speaks for Intelx86

To check name: HW signs a challenge “r”.

35

Gating Functions in Hardware

Sensible to trust hardware implementation of gating
functions if:

– can trust manufacturers documentation
§ Certificate with name indicates documentation to read

– physical access to device required for compromise
– attackers do not have physical access to device

36

HW Features (simplified impl)

New instructions to
● Set (“extend”) configuration registers. Reset by reboot.
● Set key registers.

– sealing key registers, quoting key registers, unbinding key registers.
● Compute gating functions:

– Sealing (protects confidentiality and integrity)
§ Shared-key encryption

– Quoting (establishes authenticity)
§ Public key decryption / digital signature

– Binding (import remote content)
§ Private key decryption

37

Security Case for Keys

● Keys are created in key registers and never leave
registers (unless encrypted).

● Instructions that read a key register KR do not reveal
contents of KR.

● Keys remain in key registers after reboot but cannot be
accessed unless configuration registers set again (but
that requires loading trusted software).

38

Configuration constraints

Basis for allowing access to a gating function.
● Configuration constraint C is a set of pairs:

– Name of configuration register CRi
– Value in the configuration register CRi

● Configuration constraint is satisfied (or not) based on
current values in configuration registers.
– Implicit definition for set of measured principals

Loading configuration registers:
CRreset(CRi): CRi := 0
CRextend(CRi , mem): CRi := Hash(CRi * Hash(mem))

39

Gating Functions: General

KRgen(KRi, crSet) / KRgen(KRi, mem, crSet):
stores fresh key in key register KRi
(may also store certificate in memory mem)
crSet is set of pairs: < CRi , value in Cri >

F(KRi , in, out):
out := F(Kri, in) if crSet satisfied.

40

Gating Functions: Sealing

seal(KRi, in, out);
– Creates K/C-sealed bit string if C holds.

unseal(KRi, in, out);
– Given K/C-sealed bit string, retrieves original value.

Executes only when C holds, KRi contains sealing key,
and “in” unaltered since seal invoked.

Useful to store state between activations of a system, but
protocol needed for software upgrade.

41

Gating Functions: Quoting

● Digital signature attests to configuration constraint
at time of signing.

● Configuration constraint can be basis for trust in
message contents.

KRgetConf(KRi, r, out):
– generates certificate with configuration constraint

associated with key register KRi.
KRgetCurConf(crSet, r, out):

– generates certificate with configuration registers in crSet.

42

Gating Functions: Unbinding

Decryption with private key k “binds”
information to configuration constraint Ck.

Remote host uses public key K to ensure
content becomes visible only to systems
satisfying Ck.

43

Awkward HW Abstractions

● Clients share a single set of configuration and
key registers. So clients must trust each other.
– Better: Implement per-client register sets

● Small set of cryptographic functions available as
gating functions.
– Better: Allow additional gating functions.

44

Per-client Registers

Instructions that access configuration and key
registers are system mode.

– Instructions exist to save/restore KR’s.
– No instructions to save/restore CR’s.
So standard recipe to multiplex registers fails.

Build sw emulator for instructions and registers.
– Use seal/unseal for save/restore sets of KR’s.
– Use software copy of CR’s. If satisfied, invoke HW

gating function where CR’s are satisfied by emulator.
45

Remote Attestation

Protocol for R to obtain (for p on remote host S):
– Description Dp where N(Dp) = p
– Public key Katt.p
– Certificate: Katt.p speaksfor p

46

Use of Measured Principals

Applications of measured principals:
● Cloud services. No need to trust cloud operator.
● Digital rights management (IP). Prevent theft of

digital content.
● More secure desktop. Prevent modification to

run-time.

47

Abuse of Measured Principals

System designer can prevent adding extensions.
– Lock-out competitor’s products
– Impinges on computer owner’s rights

Rights and responsibilities of being in an ecosystem:
– Keep system patched
– Prevent malware from being loaded

48

