|Isolation and Flow of Information
CMMRS 2019 (2/3)

Saarbrucken, Germany
August 2019

Fred B. Schneider

Samuel B Eckert Professor of Computer Science

Department of Computer Science
Cornell University
Ithaca, New York 14853
U.S.A.

Cornell CIS

Security Trade-offs: Inconvenience

Approaches to enforcement:

— Monitoring.
= Authenticate source of each request
= Use context of past action to block future violations
Inconvenience: Authentication of users,
authentication of programs, limitations on flexibility

— Isolation.
= Keep attackers out or keep attackers in.

Inconvenience: Blocks communications between
programs.

Security Trade-offs: Values

Enforcement can be in conflict with
— Privacy
— Openness
— Freedom of expression
— Opportunity to innovate
— Access to information

Values differ across jurisdictions in Internet.

Build on the Past?

Flawed analogies lead to flawed interventions.
— Liability lawsuits
— Insurance to limit exposure (and transfer risk)
— Deterrence through accountability

Flawed Analogies: Liability

Basis: Comparison of observed performance
with some basis for acceptable behavior.

— Need a specification
= Expensive to produce
= Limits extension (functionality or environment)
= Weak specifications do not rule out attacks.
= Strong specifications rule out re-purposing

Flawed Analogies: Insurance

Basis: Data about past incidents and
payouts used to predict future payouts (and
determine price).

— Software evolution is discontinuous

— Changes to environment are uncontrolled by
user, developer, insurer.

Flawed Analogies: Deterrence

Basis: Identify attackers and punish them.
— Attribution of cyber-attacks difficult

— Jurisdiction of attacker might not be willing to
help.

Balkanize the Internet into regions of
cooperation delimited by monitoring?

Packaging to Create Incentives

Cybersecurity doctrine:

e Goals define
— kinds and levels of cybersecurity sought
— acceptable trade-offs and costs.

e Means include

— Technical / education / regulation
» Incentives: market-based to coercive

A lens for viewing policy proposals.

Early Doctrine:
Doctrine of Prevention

Build systems that don’t have vuins.

— Unworkable:
= Big systems are too complicated to get right.
= Formal verification infeasible
= Exhaustive testing infeasible
= Performance standards would require security metrics.

— Incomplete:
= Ignores users and operators (“social engineering”)

= Environment not static (attacks, assumptions, uses)
e Specifications must evolve
e Assurance argument must be reconstructed

Early Doctrine:
Doctrine of Risk Management 1

Invest in security to reduce expected
losses due to attacks.

. Cost of attack

— What is value of confidentiality? Integrity?
— What is the cost of recovery from attack?
— What about costs to third parties?

- Probability of attack
— Insufficient data about threats and vulns.

Early Doctrine:
Doctrine of Risk Management

- Under-investment is rational.

— Individuals cannot:
= reap full benefit from their investments.
= cannot control vulns.

— No metrics to predict ROI

— Insufficient data about threats, vulns, and cost of
losses

— Continuing investments would be needed
= Threats co-evolve with defenses
= Replacement systems and upgrades constantly deployed
= New domains mean new forms of security needed.

2

10

Recent Doctrine:
Doctrine of Accountabillity

Deter attacks through threats of
retribution.

— Retrospective and punitive
= No concern about keeping systems up and running.

— Attribution of action is often infeasible.
= Cross border enforcement?
= Non-state actors?
= Binding of machines to individuals is weak.

— Incomplete:
= Narrow set of policy options for privacy.
= Presumes attacks are crimes.

11

Toward a New Doctrine:

Public Goods

Thesis: Cybersecurity is a public good.

= Non-rivalrous: Consumption of the good by one individual does
not reduce availability for consumption by others.

= Non-excludable: No individual can be excluded from having
access to the good.

“Public health” is a public good, too...

12

Public Health?

.. duties and power of the state to assure health of
the population (not individual) and limitations on
that power to protect the interests of individuals.

= Herd immunity vs individual vaccination risk
= Stem an epidemic vs individual privacy
= [ncentives vs externalities

13

Doctrine for Public Health

Goals: Prompt production
Manage its absence

Means: Education, prevention, surveillance,
containment (quarantine), diversity, mitigation,
recovery.

= Eschew: punishment, compensation, restitution

Requires new research and always will.
— Pathogens evolve.
— Expectations and health needs grow.

14

Public Health = Public Cybersecurity

- Network: people > computers (+ people)

- Positive state: health = cybersecurity
— Produce: health - produce cybersecurity
— Manage: disease - manage insecurity (vulns)

15

Public Health - Public Cybersecurity

- Network: people > computers (+ people)

- Positive state: health = cybersecurity
— Produce: health - produce cybersecurity
— Manage: disease - manage insecurity (vulns)

Doctrine(s) of Public Cybersecurity:
Prompt the production of cybersecurity.
Manage the remaining insecurity.

Political agreement to balance individual
rights and public welfare

16

Public Cybersecurity Mechanisms

e Produce Security

e Manage insecurity
— Diversity (obfuscation/randomization)

— Monitoring
= Boundary traffic-monitoring (firewalls, Einstein)
= Mandate ISP coordination

— Patching (cost subsidy, injured party comps)
— Isolation (vs encryption, vs censorship)
— Intermediaries (ISP’s)

17

Important Metaphors

e Cyber-attacks as crime
— Deterrence through Accountability

e Cyber-attacks as disease
— Public Cybersecurity

e Cyber-attacks as warfare
—?7?

One defense suffices: Avoid vulnerabilities.

18

For additional information

Doctrine for Cybersecurity Deirdre K. Mulligan and Fred B.
Schneider. In Daedalus, Journal of the American Academy of Arts &
Sciences, Fall 2011 (“Protecting the Internet as a Public Commons”,
eds. David D. Clark and John B. Horrigan). Pages 70-92.

Impediments with Policy Interventions to Foster Cybersecurity
Investment Fred B. Schneider. Communications of the ACM Vol 61,
No. 3 (March 2018), 38—38.

19

Produce Security:
Enforcement Strategies

e Isolation

e Monitoring

e Recovery

e Asymmetric Computation

20

Walls Enforce Isolation

e Prison walls: Keep people in.
e Fortress walls: Keep people out.

e Windows/doors allow activities on one
side to influence the other side.

Holes degrade isolation.

Holes are not always apparent.
= acoustic, energy, timing

21

Isolation in computing systems

Allows stronger assumptions about a component’s
environment: less need to trust the environment.
— Restrict environment form changing component’s state
= Protects integrity

— Restrict environment from influence by component
= Protects confidentiality of sys state

22

Units of Isolation

e Physical isolation

e Processes and virtual machines
— Mapping
— Time multiplexing

e Measured principals
— Cryptography

23

Mapping for Isolation

Environment for a process:
— Instruction set. Uses “names” for variables.
— Memory. Associates values with names.

Idea: Interpose per-process mappings map.P:
map.P: names - values
by loading register MR with map.P.
Enforce disjoint ranges for mappings.

24

Process Switch = Mapping Switch

While executing P: MR = map.P
To start executing Q: MR := map.Q

Implementation details
— Map.P implemented by pairs { ... <n, addr> ... }

= Limit possible mappings to enable smaller tables
e <n, lim, addr> maps: n+A to addr+A if A< Ilim

= Only “trusted” software executes "MR := ... "
e Impl by having processor modes: system versus user
e Only trusted software executes in system mode.

25

Time multiplexing for isolation

Interposition of mapping not always available.

From time t to t": P has exclusive access to r.
Otherwise: state of resource r saved for P in R[P]

Transitions:
— Instructions to cause: r:= R[P] or R[P]:=r
— Interrupt to cause: R[P] :=r

26

Isolation by Cryptography

e Encryption can enforce confidentiality

e Digital signatures can restrict updates.
— N.b. Unauthorized writes destroy availability

But need protection for cryptographic keys! Soln:

— Generate and store keys in special registers.
= Assumes tamper-proof hardware

— Execute cryptographic functions in hardware.
— Control access to cryptographic functions.

27

Measured Principals

Abstractions used in TPM, SGX, ...

Measured Principal: Properties of its execution
can be deduced from it's name. Name is basis for
trust. Name is not just aspirational: “Windows 9”

Gating Function: K-F(...) is instantiated with a
fixed config constraint C(K,F)---a set of names of
measured prins allowed access. Kis a key. Fis a
cryptographic function.

28

Names from Descriptions

N(D) is name inextricably linked to a description D

— D = <d1, d2, ... dn> gives descriptors di (in order
accessed for resources.
= Each di depends on state and capabilities of resource.

— D allows predictions of what N(D) does.

— Modified description D’ gives modified name N(D’)

= Gating functions deny accesses by modified name.
e Patches and revision?
» Access linked to initial state, not current state of resource.

29

Properties of Names

Prevent attackers from computing specific names.
= Prevent attackers from getting access to a gating function.

Name N(D) for measured principal should satisfy:
— =(D = D’) implies =(N(D) = N(D"))
— Infeasible to construct D’ where
= (D = D) and N(D) = N(D")

30

Names as Hashes

Hashes have the required properties.

hc:=0
fori:=1ton
hc := Hash(hc [o] Hash(di))

Hashes can be computed incrementally
— Next resource computed during execution
— Past resources deleted (as in boot)

31

Descriptor Detalls

Descriptor should depend on contributions of
resource to execution semantics for measured
principal.

— Need: Equality test for descriptor vs resource

— Need: Equality implies equivalent behavior.

— Do not need: Transparency or property inference.

Might also have “hint” to identify actual resource
to analyze for comparison.

32

Descriptors for Storage

Depends on values stored:

< dey,
strt, fin,
H(dev[strt] , dev[strt+1] ... dev[fin] >

Descriptors for Interpreters

Implemented in software: Use descriptor for
storage containing interpreter.

Implemented in hardware: Need unique id.
HW cannot reveal id or else impersonation
becomes possible using VMM.

34

Descriptors for HW Processors

e HW instance id has unique (private) signing key Kk.id
e HW has instruction to produce signature with k.id
e Verification (public) key K.id:
= K.id used as that name of processor
= HW read-only register could contains K.id
= Certificate:
Intel says K.id speaks for Intelx86

A\ YW /4
I

To check name: HW signs a challenge

35

Gating Functions in Hardware

Sensible to trust hardware implementation of gating
functions if:

— can trust manufacturers documentation
= Certificate with name indicates documentation to read

— physical access to device required for compromise
— attackers do not have physical access to device

36

HW Features (simplified impl)

New instructions to
e Set (“extend”) configuration registers. Reset by reboot.

e Set key registers.
— sealing key registers, quoting key registers, unbinding key registers.

e Compute gating functions:
— Sealing (protects confidentiality and integrity)
= Shared-key encryption

— Quoting (establishes authenticity)
= Public key decryption / digital signature

— Binding (import remote content)
= Private key decryption

37

Security Case for Keys

e Keys are created in key registers and never leave
registers (unless encrypted).

e Instructions that read a key register KR do not reveal
contents of KR.

e Keys remain in key registers after reboot but cannot be
accessed unless configuration registers set again (but
that requires loading trusted software).

38

Configuration constraints

Basis for allowing access to a gating function.

e Configuration constraint C is a set of pairs:
— Name of configuration register CRi
— Value in the configuration register CRIi

e Configuration constraint is satisfied (or not) based on
current values in configuration registers.
— Implicit definition for set of measured principals

Loading configuration registers:
CRreset(CRi): CRi:=0
CRextend(CRi , mem): CRi := Hash(CRi * Hash(mem))

39

Gating Functions: General

KRgen(KRi, crSet) / KRgen(KRi, mem, crSet):
stores fresh key in key register KRi
(may also store certificate in memory mem)
crSet is set of pairs: < CRi, value in Cri >

F(KRi, in, out):
out := F(Kri, in) if crSet satisfied.

40

Gating Functions: Sealing

seal(KRi, in, out);
— Creates K/C-sealed bit string if C holds.
unseal(KRi, in, out);

— Given K/C-sealed bit string, retrieves original value.
Executes only when C holds, KRi contains sealing key,
and “in” unaltered since seal invoked.

Useful to store state between activations of a system, but
protocol needed for software upgrade.

41

Gating Functions: Quoting

e Digital signature attests to configuration constraint
at time of signing.

e Configuration constraint can be basis for trust in
message contents.

KRgetConf(KRi, r, out):

— generates certificate with configuration constraint
associated with key register KRi.

KRgetCurConf(crSet, r, out):
— generates certificate with configuration registers in crSet.

42

Gating Functions: Unbinding

Decryption with private key k “binds”
information to configuration constraint Ck.

Remote host uses public key K to ensure
content becomes visible only to systems

satisfying CKk.

43

Awkward HW Abstractions

e Clients share a single set of configuration and
key registers. So clients must trust each other.

— Better: Implement per-client register sets

e Small set of cryptographic functions available as
gating functions.

— Better: Allow additional gating functions.

44

Per-client Registers

Instructions that access configuration and key
registers are system mode.

— Instructions exist to save/restore KR's.

— No instructions to save/restore CR’s.

So standard recipe to multiplex registers fails.

Build sw emulator for instructions and registers.
— Use seal/unseal for save/restore sets of KR's.

— Use software copy of CR’s. If satisfied, invoke HW
gating function where CR’s are satisfied by emulator.

45

Remote Attestation

Protocol for R to obtain (for p on remote host S):
— Description Dp where N(Dp) = p
— Public key Katt.p
— Certificate: Katt.p speaksfor p

46

Use of Measured Principals

Applications of measured principals:
e Cloud services. No need to trust cloud operator.

e Digital rights management (IP). Prevent theft of
digital content.

e More secure desktop. Prevent modification to
run-time.

47

Abuse of Measured Principals

System designer can prevent adding extensions.
— Lock-out competitor’s products
— Impinges on computer owner’s rights

Rights and responsibilities of being in an ecosystem:
— Keep system patched
— Prevent malware from being loaded

48

