
Polymorphism Example

Consider a “doubling” function that takes a function f, and an
integer x, applies f to x, and then applies f to the result:

doubleInt ≜ λf : int → int. λx : int. f (f x)

Now suppose we want the same function for Booleans, or
functions...

doubleBool ≜ λf :bool → bool. λx :bool. f (f x)
doubleFn ≜ λf : (int → int) → (int → int). λx : int → int. f (f x)

...

1



Polymorphism Example

Consider a “doubling” function that takes a function f, and an
integer x, applies f to x, and then applies f to the result:

doubleInt ≜ λf : int → int. λx : int. f (f x)

Now suppose we want the same function for Booleans, or
functions...

doubleBool ≜ λf :bool → bool. λx :bool. f (f x)
doubleFn ≜ λf : (int → int) → (int → int). λx : int → int. f (f x)

...

1



Polymorphism Example

Consider a “doubling” function that takes a function f, and an
integer x, applies f to x, and then applies f to the result:

doubleInt ≜ λf : int → int. λx : int. f (f x)

Now suppose we want the same function for Booleans, or
functions...

doubleBool ≜ λf :bool → bool. λx :bool. f (f x)
doubleFn ≜ λf : (int → int) → (int → int). λx : int → int. f (f x)

...

1



Abstraction

These examples on the preceding slides violate a fundamental
principle of software engineering:

Definition (Abstraction Principle)
Every major piece of functionality in a program should be
implemented in just one place in the code. When similar
functionality is provided by distinct pieces of code, the two
should be combined into one by abstracting out the varying
parts.
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Polymorphic λ-Calculus

Invented independently in 1972–1974 by a computer scientist
John Reynolds and a logician Jean-Yves Girard (who called it
System F).

Key feature: Function abstraction and application, just like in
λ-calculus terms, but at the type level!

Notation:
• Λα. e: type abstraction
• e[τ ]: type application

Example:
Λα. λx :α. x
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Polymorphic λ-Calculus

Syntax

e ::= n | x | λx :τ. e | e1 e2

| Λα. e

| e [τ ]

v ::= n | λx :τ. e

| Λα. e

Dynamic Semantics

(λx :τ. e) v → e{x 7→ v} (Λα. e) [τ ] → e{α 7→ τ}
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Typing Judgment

Type Syntax

α ∈ TVar
τ ::= int | τ1 → τ2

| α | ∀α. τ
Typing Judgment: ∆, Γ ` e :τ
• Γ a mapping from variables to types
• ∆ a set of type variables in scope
Type Well-Formedness: ∆ ` τ ok
For example, α → int is valid type syntax, but it is not
well-formed. But ∀α. α → int is.

{}, {} `

(Λα. λa :α. 42)

:∀α. α → int
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Typing Rules

∆, Γ ` n : int

Γ(x) = τ

∆, Γ ` x :τ

∆, Γ, x :τ ` e :τ ′ ∆ ` τ ok
∆, Γ ` λx :τ. e :τ → τ ′

∆, Γ ` e1 :τ → τ ′ ∆, Γ ` e2 :τ
∆, Γ ` e1 e2 :τ ′

∆ ∪ {α}, Γ ` e :τ
∆, Γ ` Λα. e :∀α. τ

∆, Γ ` e :∀α. τ ′ ∆ ` τ ok
∆, Γ ` e [τ ] :τ ′{α 7→ τ}
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Type Well-Formedness

α ∈ ∆

∆ ` α ok

∆ ` int ok ∆ ` bool ok

∆ ` τ1 ok ∆ ` τ2 ok
∆ ` τ1 → τ2 ok

∆ ∪ {α} ` τ ok
∆ ` ∀α. τ ok
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Example: Doubling Redux

Let’s consider the doubling operation again.

We can write a polymorphic doubling operation as:

double ≜ Λα. λf :α → α. λx :α. f (f x)

The type of this expression is: ∀α. (α → α) → α → α

We can instantiate this on a type, and provide arguments:

double [int] (λn : int. n+ 1) 7
→ (λf : int → int. λx : int. f (f x)) (λn : int. n+ 1) 7
→∗ 9
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Inference Rules for Logic

A seeming non sequitur: let’s use inference rules to define a
logical system.

Here’s a rule from natural deduction, a constructive logic
invented by logician Gerhard Gentzen in 1935:

ϕ ψ

ϕ ∧ ψ
∧-INTRO

Given a proof of ϕ and a proof of ψ, the rule lets you construct a
proof of ϕ ∧ ψ.
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Natural Deduction

Let’s use our usual PL tools to define the set of true formulas
(“theorems”).

We’ll start with a grammar for formulas:

ϕ ::= >
| ⊥
| X
| ϕ ∧ ψ
| ϕ ∨ ψ
| ϕ→ ψ
| ¬ϕ
| ∀X. ϕ

where X ranges over Boolean variables
and¬ϕ is an abbreviation for ϕ→ ⊥.
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Natural Deduction

Let’s define a judgment that that a formula is true given a set of
assumptions Γ:

Γ ` ϕ

where Γ is just a list of formulas.

If ` ϕ (with no assumptions), we say ϕ is a theorem.

Examples:
• ` A ∧ B → A
• ` ¬(A ∧ B) → ¬A ∨ ¬B
• A,B, C ` B
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Let’s write the rules for our judgment:

Γ ` ϕ Γ ` ψ
Γ ` ϕ ∧ ψ

∧-INTRO

Γ ` ϕ ∧ ψ
Γ ` ϕ

∧-ELIM1
Γ ` ϕ ∧ ψ
Γ ` ψ

∧-ELIM2

Γ, ϕ ` ψ
Γ ` ϕ→ ψ

→-INTRO

...and so on.
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Natural Deduction

Γ, ϕ ⊢ ϕ
AXIOM

Γ, ϕ ⊢ ψ
Γ ⊢ ϕ→ ψ

→-INTRO Γ ⊢ ϕ→ ψ Γ ⊢ ϕ
Γ ⊢ ψ

→-ELIM

Γ ⊢ ϕ Γ ⊢ ψ
Γ ⊢ ϕ ∧ ψ

∧-INTRO Γ ⊢ ϕ ∧ ψ
Γ ⊢ ϕ

∧-ELIM1 Γ ⊢ ϕ ∧ ψ
Γ ⊢ ψ

∧-ELIM2

Γ ⊢ ϕ
Γ ⊢ ϕ ∨ ψ

∨-INTRO1 Γ ⊢ ψ
Γ ⊢ ϕ ∨ ψ

∨-INTRO2

Γ ⊢ ϕ ∨ ψ Γ ⊢ ϕ→ χ Γ ⊢ ψ → χ

Γ ⊢ χ
∨-ELIM

Γ, P ⊢ ϕ
Γ ⊢ ∀P. ϕ

∀-INTRO Γ ⊢ ∀P. ϕ
Γ ⊢ ϕ{ψ/P}

∀-ELIM

13



Natural Deduction

Let’s try a proof! We can write a proof that A ∧ B → B ∧ A is a
theorem.

A ∧ B ⊢ A ∧ B
AXIOM

A ∧ B ⊢ B
∧-ELIM2 A ∧ B ⊢ A ∧ B

AXIOM

A ∧ B ⊢ A
∧-ELIM1

A ∧ B ⊢ B ∧ A
∧-INTRO

⊢ A ∧ B → B ∧ A
→-INTRO

Does this look familiar?

x :A× B ⊢ x :A× B
T-VAR

x :A× B ⊢ #2 x :B
T-#1 x :A× B ⊢ x :A× B

T-VAR

x :A× B ⊢ #1 x :A
T-#2

x :A× B ⊢ (#2 x,#1 x) :B× A
T-PAIR

⊢ λx. (#2 x,#1 x) :A× B → B× A
T-ABS
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Propositions as Types

Every natural deduction proof tree has a corresponding type
tree in System F with product and sum types! And vice-versa!

Type Systems Formal Logic
τ Type ϕ Formula
τ is inhabited ϕ is a theorem
e Well-typed expression π Proof

A programwith a given type acts as awitness that the type’s
corresponding formula is true.

15



Propositions as Types

Every type rule in System F with product and sum types
corresponds 1-1 with a proof rule in natural deduction:

Type Systems Formal Logic
→ Function → Implication
× Product ∧ Conjunction
+ Sum ∨ Disjunction
∀ Universal ∀ Quantifier

You can even add existential types to correspond to existential
quantification. It still works!

Is this a coincidence? Natural deduction was invented by a
German logician in 1935. Types for the λ-calculus were invented
by Church at Princeton in 1940.

16



Propositions as Types

Every type rule in System F with product and sum types
corresponds 1-1 with a proof rule in natural deduction:

Type Systems Formal Logic
→ Function → Implication
× Product ∧ Conjunction
+ Sum ∨ Disjunction
∀ Universal ∀ Quantifier

You can even add existential types to correspond to existential
quantification. It still works!

Is this a coincidence? Natural deduction was invented by a
German logician in 1935. Types for the λ-calculus were invented
by Church at Princeton in 1940.
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Propositions as Types Through the Ages

Natural Deduction
Gentzen (1935)

⇔ Typed λ-Calculus
Church (1940)

Type Schemes
Hindley (1969)

⇔ ML’s Type System
Milner (1975)

System F
Girard (1972)

⇔ Polymorphic λ-Calculus
Reynolds (1974)

Modal Logic
Lewis (1910)

⇔ Monads
Kleisli (1965), Moggi (1987)

Classical–Intuitionistic
Embedding
Gödel (1933)

⇔ Continuation Passing Style
Reynolds (1972)

17



Term Assignment

This all means that we have a new way of proving theorems:
writing programs!

To prove a formula ϕ:
1. Convert the ϕ into its corresponding type τ .
2. Find some program e that has the type τ .
3. Realize that the existence of v implies a type tree for ` e :τ ,

which implies a proof tree for ` ϕ.
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Linear Logic

Linear logic is a very different kind of logic, introduced by
Jean-Yves Girard in 1987 (in the Curry–Howard era).

“Normal” logic is meant to represent truth. And facts stay true
even after to use them to prove other facts:

A → B, A → C, A ` B ∧ C
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Linear Logic

In linear logic, a better intuition is the conservation of matter, as
in a chemical reaction. We can’t reuse A twice:

A ⊸ B, A ⊸ C, A ⊬ B⊗ C

(Where⊸ is matter-preserving implication, and⊗ is like∧ but
for linear resources.)

You would need two copies of A:

A ⊸ B, A ⊸ C, A, A ` B⊗ C
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Linear Logic Syntax

Here’s a complete language for linear logic formulas:

ϕ ::= A | ϕ⊸ ψ | ϕ⊗ ψ | ϕ⊕ ψ

where⊸ is like an intuitionistic→,⊗ is like∧, and⊕ is like∨.
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Linear Logic Inference Rules

Compare the intuitionistic rule for∧ introduction with the linear
rule for⊗ introduction:

Γ ` ϕ Γ ` ψ
Γ ` ϕ ∧ ψ

∧-INTRO
Γ1 ` ϕ Γ2 ` ψ
Γ1, Γ2 ` ϕ⊗ ψ

⊗-INTRO

Contexts Γ are now like lists, not sets!
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Linear Logic Inference Rules

ϕ ` ϕ
AXIOM

Γ, ϕ ` ψ
Γ ` ϕ⊸ ψ

⊸-INTRO

Γ1 ` ϕ⊸ ψ Γ2 ` ϕ
Γ1, Γ2 ` ψ

⊸-ELIM
Γ1 ` ϕ Γ2 ` ψ
Γ1, Γ2 ` ϕ⊗ ψ

⊗-INTRO

Γ1 ` ϕ⊗ ψ Γ2, ϕ, ψ ` χ
Γ1, Γ2 ` χ

⊗-ELIM
Γ ` ϕ

Γ ` ϕ⊕ ψ
⊕-INTRO-L

Γ ` ψ
Γ ` ϕ⊕ ψ

⊕-INTRO-R

Γ1 ` ϕ⊕ ψ Γ2, ϕ ` χ Γ2, ψ ` χ
Γ1, Γ2 ` χ

⊕-ELIM
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The Structural Rules

In an intuitionistic world, these rules are so boring that we don’t
usually even write them down. But they’re critical for
highlighting the difference with linear logic:

Γ ` ϕ
Γ, ψ ` ϕ

WEAKENING
Γ1, Γ2 ` ϕ
Γ2, Γ1 ` ϕ

EXCHANGE

Γ, ψ, ψ ` ϕ
Γ, ψ ` ϕ

CONTRACTION
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The Structural Rules

Γ ` ϕ
Γ, ψ ` ϕ

WEAKENING
Γ1, Γ2 ` ϕ
Γ2, Γ1 ` ϕ

EXCHANGE

Γ, ψ, ψ ` ϕ
Γ, ψ ` ϕ

CONTRACTION

Eliminating these rules produces a family of substructural logics:
• Linear logic: Exchange only. Matter may neither be created
nor destroyed.

• Affine logic: Exchange & weakening. You can use things or
ignore them, but not duplicate them.

• Relevant logic: Exchange & contraction. Use everything at
least once.

• Ordered logic: None. Use everything exactly once, in order.
24



Substructural Type Systems

Via Curry–Howard, every substructural logic becomes a
substructural type system:
• Linear logic: Use every variable exactly once!
• Affine logic: Use every variable at most once!
• Relevant logic: Use every variable at least once!
• Ordered logic: Use every variable once, in order??

` (λx : int. x+ x) : int → int ⊬ (λx : int. x+ x) : int ⊸ int
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Applications of Substructural Types

Imagine a language with pointers. You can allocate memory,
load and store through pointers, and free memory:

let p = malloc 4 in
store p ((load p) + 38);
free p

Everyone who has ever written C has written a double-free bug:

let p = malloc 4 in
free p;
free p

26



Applications of Substructural Types

Imagine a language with pointers. You can allocate memory,
load and store through pointers, and free memory:

let p = malloc 4 in
store p ((load p) + 38);
free p

Everyone who has ever written C has written a double-free bug:

let p = malloc 4 in
free p;
free p

26



Applications of Substructural Types

The unsafe (C-like) load and store “functions” have these types:

store :∀α. (α ptr× α) → void load :∀α. α ptr → α

The obvious linear versions are too restrictive:

store :∀α. (α ptr× α) ⊸ void load :∀α. α ptr ⊸ α

The trick is to “thread through” the pointer so you get a copy
back on non-destructive operations:

store :∀α. (α ptr×α) ⊸ α ptr load :∀α. α ptr ⊸ (α ptr×α)

The destructive free function still consumes its argument and
doesn’t give it back.

27



Applications of Substructural Types

The unsafe (C-like) load and store “functions” have these types:

store :∀α. (α ptr× α) → void load :∀α. α ptr → α

The obvious linear versions are too restrictive:

store :∀α. (α ptr× α) ⊸ void load :∀α. α ptr ⊸ α

The trick is to “thread through” the pointer so you get a copy
back on non-destructive operations:

store :∀α. (α ptr×α) ⊸ α ptr load :∀α. α ptr ⊸ (α ptr×α)

The destructive free function still consumes its argument and
doesn’t give it back.

27



Applications of Substructural Types

The unsafe (C-like) load and store “functions” have these types:

store :∀α. (α ptr× α) → void load :∀α. α ptr → α

The obvious linear versions are too restrictive:

store :∀α. (α ptr× α) ⊸ void load :∀α. α ptr ⊸ α

The trick is to “thread through” the pointer so you get a copy
back on non-destructive operations:

store :∀α. (α ptr×α) ⊸ α ptr load :∀α. α ptr ⊸ (α ptr×α)

The destructive free function still consumes its argument and
doesn’t give it back.

27



Substructural Types for Memory Safety
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