Polymorphism Example

Consider a “doubling” function that takes a function f, and an
integer x, applies fto x, and then applies f to the result:

Polymorphism Example

Consider a “doubling” function that takes a function f, and an
integer x, applies fto x, and then applies f to the result:

doublelnt £ Mf:int — int. \x:int. f (fx)

Polymorphism Example

Consider a “doubling” function that takes a function f, and an
integer x, applies fto x, and then applies f to the result:

doublelnt £ Mf:int — int. \x:int. f (fx)

Now suppose we want the same function for Booleans, or
functions...

doubleBool £ \f:bool — bool. \x:bool. f (fx)
doubleFn £)f:(int — int) — (int — int). \x:int — int. f(fx)

Abstraction

These examples on the preceding slides violate a fundamental
principle of software engineering:

Definition (Abstraction Principle)

Every major piece of functionality in a program should be
implemented in just one place in the code. When similar
functionality is provided by distinct pieces of code, the two
should be combined into one by abstracting out the varying
parts.

Polymorphic A-Calculus

Invented independently in 1972-1974 by a computer scientist
John Reynolds and a logician Jean-Yves Girard (who called it
System F).

Key feature: Function abstraction and application, just like in
A-calculus terms, but at the type level!

Notation:
e Aa.e: type abstraction
e e[r]: type application

Example:
Ao Ax:a x

Polymorphic A-Calculus

Syntax

ex=n|x|MT.e|e e
vi=n|M:T.€e

Polymorphic A-Calculus

Syntax

ex=nl|x| M T.e|ee|Ne
vi=n|M:T.€e

Polymorphic A-Calculus

Syntax

ex=nl|x| M T.e|e e |Ne]|elr]
vi=n|M:T.€e

Polymorphic A-Calculus

Syntax

ex=nl|x| M T.e|e e |Ne]|elr]
vi=n|M:T.e|Na.e

Polymorphic A-Calculus

Syntax

ex=nl|x| M T.e|e e |Ne]|elr]
vi=n|M:T.e|Na.e

Dynamic Semantics

(M:T.e)v—e{x— v}

Polymorphic A-Calculus

Syntax

ex=nl|x| M T.e|e e |Ne]|elr]
vi=n|M:T.e|Na.e

Dynamic Semantics

(Mt e)v— e{x—= v} (Aa.e) [1] = e{a— 7}

Typing Judgment

Type Syntax

o € TVar
Tro=int| 1 —>n

Typing Judgment

Type Syntax

o € TVar

To=int | > 0o

Typing Judgment

Type Syntax

o € TVar

Ti=int| > 7| a| Vo

Typing Judgment

Type Syntax

o € TVar
To=int|n > n|a|Var
Typing Judgment: AT Fe:7
e [amapping from variables to types
e A asetof type variables in scope

(6]

Typing Judgment

Type Syntax

a € TVar
Ti=int| > 7| a| Vo

Typing Judgment: AT Fe:7

e [amapping from variables to types

e A asetof type variables in scope

Type Well-Formedness: A F 7 ok

For example, @ — intis valid type syntax, but it is not
well-formed. But Va. v — intiis.

(6]

Typing Judgment

Type Syntax

o € TVar
To=int|n > n|a|Var
Typing Judgment: AT Fe:7
e [amapping from variables to types
e A asetof type variables in scope
Type Well-Formedness: A F 7 ok

For example, @ — intis valid type syntax, but it is not
well-formed. But Va. o — intis.

(Aav. \a:a. 42)

(6]

Typing Judgment

Type Syntax

o € TVar
To=int|n > n|a|Var
Typing Judgment: AT Fe:7
e [amapping from variables to types
e A asetof type variables in scope
Type Well-Formedness: A F 7 ok

For example, @ — intis valid type syntax, but it is not
well-formed. But Va. o — intis.

{}L,{}F (Aa. Aa:a. 42):Va. o — int

(6]

Typing Rules

A.TF n:int

Typing Rules

A.TF n:int

Typing Rules

A.TF n:int

AT x:the:r AFTo0k
ATHFM:T.e:T— 7

Typing Rules

A, T Fn:int

AT x:tHe:7 AFTo0k

Frx)=r
AT FEx:T

ATkFe =17 ATkFe:T

ATHFM:T.e:T— 7

ATFe e:7

Typing Rules

A, T Fn:int

AT x:tHe:7 AFTo0k

Frx)=r
AT FEx:T

ATkFe =17 ATkFe:T

ATHFM:T.e:T— 7

Au{a},THe:r
ATEFAx.e:Va. 1

ATFe e:7

Typing Rules

A, T Fn:int

AT x:tHe:7 AFTo0k

Frx)=r
ATEFx:T

ATkFe =17 ATkFe:T

ATHFM:T.e:T— 7

Au{a},THe:r
ATEFAx.e:Va. 1

ATFe e:7

ATkFe:Va. 7 At 70k

ATrFelr]:7{a— 1}

Type Well-Formedness

aec A
A F aok

Type Well-Formedness

aec A
A F aok

A Fintok A F bool ok

Type Well-Formedness

aec A
A F aok

A Fintok A F bool ok

A}_Tlok A}_7'20k
A|_T1—>7'20k

Type Well-Formedness

aec A
A F aok

A Fintok A F bool ok

A}_Tlok A}_7'20k
A|_T1—>7'20k

AuU{a}t 7ok
A FVa. 70k

Example: Doubling Redux

Let’s consider the doubling operation again.

Example: Doubling Redux

Let’s consider the doubling operation again.

We can write a polymorphic doubling operation as:

double = Aa. Mfrar — . Mx:a. f(fx)

Example: Doubling Redux

Let’s consider the doubling operation again.

We can write a polymorphic doubling operation as:

double = Aa. Mfrar — . Mx:a. f(fx)

The type of this expression is: V. (« = o) — a — «

Example: Doubling Redux

Let’s consider the doubling operation again.

We can write a polymorphic doubling operation as:

double = Aa. Mfrar — . Mx:a. f(fx)

The type of this expression is: V. (« = o) — a — «

We can instantiate this on a type, and provide arguments:

Example: Doubling Redux

Let’s consider the doubling operation again.

We can write a polymorphic doubling operation as:

double = Aa. Mfrar — . Mx:a. f(fx)

The type of this expression is: V. (« = o) — a — «

We can instantiate this on a type, and provide arguments:

double [int] (An:int.n +1)7

Example: Doubling Redux

Let’s consider the doubling operation again.

We can write a polymorphic doubling operation as:

double = Aa. Mfrar — . Mx:a. f(fx)

The type of this expression is: V. (« = o) — a — «

We can instantiate this on a type, and provide arguments:

double [int] (An:int.n +1)7
— (AMf:int — int. \cint. f(fx)) (An:int.n + 1) 7

Example: Doubling Redux

Let’s consider the doubling operation again.

We can write a polymorphic doubling operation as:

double = Aa. Mfrar — . Mx:a. f(fx)

The type of this expression is: V. (« = o) — a — «

We can instantiate this on a type, and provide arguments:

double [int] (An:int.n +1)7
— (AMf:int — int. \cint. f(fx)) (An:int.n + 1) 7
—* 9

Inference Rules for Logic

A seeming non sequitur: let’s use inference rules to define a
logical system.

Inference Rules for Logic

A seeming non sequitur: let’s use inference rules to define a
logical system.

Here’s a rule from natural deduction, a constructive logic
invented by logician Gerhard Gentzen in 1935:

¢
PAY

Given a proof of ¢ and a proof of 1, the rule lets you construct a
proof of ¢ A 9.

A-INTRO

Natural Deduction

Let’s use our usual PL tools to define the set of true formulas
(“theorems”).

10

Natural Deduction

Let’s use our usual PL tools to define the set of true formulas
(“theorems”).

We'll start with a grammar for formulas:

¢ = T
It
| X
| onY
AR
| o=
-
| VX ¢

where X ranges over Boolean variables
and —¢ is an abbreviation for ¢ — 1.

10

Natural Deduction

Let’s define a judgment that that a formula is true given a set of

assumptions [
)

where I is just a list of formulas.

11

Natural Deduction

Let’s define a judgment that that a formula is true given a set of
assumptions[:
MEo

where I is just a list of formulas.
If = ¢ (with no assumptions), we say ¢ is a theorem.

Examples:
e FAANB—A

11

Natural Deduction

Let’s define a judgment that that a formula is true given a set of
assumptions [
MEo

where I is just a list of formulas.
If = ¢ (with no assumptions), we say ¢ is a theorem.

Examples:
e FAANB—A
e --(AANB) - -AV B

11

Natural Deduction

Let’s define a judgment that that a formula is true given a set of
assumptions [

)
where I is just a list of formulas.
If = ¢ (with no assumptions), we say ¢ is a theorem.

Examples:

e FAANB—A

e --(AANB) - -AV B
e AB.CFB

11

Natural Deduction

Let’s write the rules for our judgment:

M=o M=
FrEo Ay

A-INTRO

12

Natural Deduction

Let’s write the rules for our judgment:

M=o M=
A-INTRO
FrEo Ay
FrEo ANy FEoAY
—————— A-ELIMI —————— A-ELIM2

=9 M=

12

Natural Deduction

Let’s write the rules for our judgment:

M=o M=
A-INTRO
FrEo Ay
FrEo ANy FEoAY
—————— A-ELIMI —————— A-ELIM2
M=o =y
Loy
—-INTRO

NEo¢— Y

12

Natural Deduction

Let’s write the rules for our judgment:

M=o M=
A-INTRO
Fr=o Ay
Fr=o A9y Fr-oAY
——— A-ELIM1 ——— A-ELIM2
) M=
Loy
—— —-INTRO
NEo¢— Y

...and so on.

12

Natural Deduction

—____ AXIOM
Mok o
oFY . NTRO Fe—v TFEO L elim
TFo— o re o
TFe TEY \INTRO TEONY \ ELiMg TEONY \ eLiM2
TFond rr
P9 . NTROT 7% \/INTRO2
rEove TEove
TFove Troox THo—x o

(=%

T.Pre V-INTRO Trv.o_ V-ELIM
r-vP. ¢ I+ ¢{v/P}

13

Natural Deduction

Let’s try a proof! We can write a proofthat AAB — BAAisa
theorem.

14

Natural Deduction

Let’s try a proof! We can write a proofthat AAB — BAAisa
theorem.

——— AXIOM ——— AXIOM
AANBFAAB ANBEAAB

A-ELIM2 A-ELIM1
ANBEB ANBEA

AANBFBAA
FAAB—BAA

A-INTRO

—-INTRO

14

Natural Deduction

Let’s try a proof! We can write a proofthat AAB — BAAisa
theorem.

——— AXIOM ——— AXIOM
AANBFAAB ANBEAAB

A-ELIM2 A-ELIM1
ANBEB ANBEA

AANBFBAA
FAAB—BAA

A-INTRO

—-INTRO

Does this look familiar?

14

Natural Deduction

Let’s try a proof! We can write a proofthat AAB — BAAisa
theorem.

——— AXIOM ——— AXIOM
AANBFAAB ANBEAAB

A-ELIM2 A-ELIM1
ANBEB ANBEA

AANBFBAA
FAAB—BAA

A-INTRO

—-INTRO

Does this look familiar?

——— T-VAR ——— T-VAR
X:AXBFXx:AXB X:AXBFXx:AXB

T-#1 T-#2
X:AXBF #2x:B X:AXBF #1x:A

X:AXBE (#2x,#1x):BxA
F O (#2Xx,#1X):AXB— BXxA

Propositions as Types

Every natural deduction proof tree has a corresponding type
tree in System F with product and sum types! And vice-versa!

Type Systems Formal Logic
7 Type ¢ Formula
7 isinhabited ¢ isatheorem
e Well-typed expression | 7 Proof

A program with a given type acts as a witness that the type’s
corresponding formula is true.

Propositions as Types

Every type rule in System F with product and sum types
corresponds 1-1 with a proof rule in natural deduction:

Type Systems Formal Logic
— Function | — Implication
x Product | A Conjunction
+ Sum vV Disjunction
VYV Universal | V Quantifier

You can even add existential types to correspond to existential
quantification. It still works!

Propositions as Types

Every type rule in System F with product and sum types
corresponds 1-1 with a proof rule in natural deduction:

Type Systems Formal Logic
— Function | — Implication
x Product | A Conjunction
+ Sum vV Disjunction
VYV Universal | V Quantifier

You can even add existential types to correspond to existential
quantification. It still works!

Is this a coincidence? Natural deduction was invented by a
German logician in 1935. Types for the A-calculus were invented
by Church at Princeton in 1940.

Propositions as Types Through the Ages

Natural Deduction
Gentzen (1935)

Type Schemes
Hindley (1969)

System F
Girard (1972)

Modal Logic
Lewis (1910)

Classical-Intuitionistic
Embedding
Godel (1933)

=

Typed X\-Calculus
Church (1940)

ML’s Type System
Milner (1975)

Polymorphic \-Calculus
Reynolds (1974)

Monads
Kleisli (1965), Moggi (1987)

Continuation Passing Style
Reynolds (1972)

Term Assignment

This all means that we have a new way of proving theorems:
writing programs!

18

Term Assignment

This all means that we have a new way of proving theorems:
writing programs!

To prove a formula ¢:
1. Convert the ¢ into its corresponding type 7.
2. Find some program e that has the type 7.

3. Realize that the existence of vimplies a type tree for- e: 7,
which implies a proof tree for - ¢.

Linear Logic

Linear logic is a very different kind of logic, introduced by
Jean-Yves Girard in 1987 (in the Curry-Howard era).

19

Linear Logic

Linear logic is a very different kind of logic, introduced by
Jean-Yves Girard in 1987 (in the Curry-Howard era).

“Normal” logic is meant to represent truth. And facts stay true
even after to use them to prove other facts:

A—-BA—CAFBAC

19

Linear Logic

In linear logic, a better intuition is the conservation of matter, as
in a chemical reaction. We can’t reuse A twice:

A—oBA—-oCA¥FB®C

(Where —o is matter-preserving implication, and ® is like A but
for linear resources.)

20

Linear Logic

In linear logic, a better intuition is the conservation of matter, as
in a chemical reaction. We can’t reuse A twice:

A—oBA—-oCA¥FB®C

(Where —o is matter-preserving implication, and ® is like A but
for linear resources.)

You would need two copies of A:

A—B,A—CAAFB®C

20

Linear Logic Syntax

Here’s a complete language for linear logic formulas:

pu=Alo—v|o@¢[oBY

where — is like an intuitionistic —, ® is like A, and @ is like V.

21

Linear Logic Inference Rules

Compare the intuitionistic rule for A introduction with the linear
rule for ® introduction:
M=o M MEo P

A-INTRO ®-INTRO
FEoNY MIoFo®y

Contexts I are now like lists, not sets!

22

Linear Logic Inference Rules

Loty

MN=¢—y

MFEo¢—1 r2F¢_O_ELIM M=o I

AXIOM —— —o-INTRO

F

M,y MN,hFoxy

Moy Trovkx K
®-ELIM _—
M, Fx oy

M=

—————— @®-INTRO-R
Fr=o@y

Moy 2,0+ x M2, 9 x

P-ELI
r17 r2 H X

&-INTRO

P-INTRO-L

M

23

The Structural Rules

In an intuitionistic world, these rules are so boring that we don’t
usually even write them down. But they’re critical for
highlighting the difference with linear logic:

K M, o

—— WEAKENING
r7’(/} F (b I—Za I_1 F ¢

EXCHANGE

Ly,dko
Lyko

CONTRACTION

24

The Structural Rules

Meo M,M -9
——— WEAKENING
r7’(/}|_¢ r2ar1|_¢

EXCHANGE

Ly, ko
Lyko

Eliminating these rules produces a family of substructural logics:

e Linear logic: Exchange only. Matter may neither be created
nor destroyed.

e Affine logic: Exchange & weakening. You can use things or
ignore them, but not duplicate them.

e Relevant logic: Exchange & contraction. Use everything at
least once.

e Ordered logic: None. Use everything exactly once, in order.

CONTRACTION

Substructural Type Systems

Via Curry-Howard, every substructural logic becomes a
substructural type system:

e Linear logic: Use every variable exactly once!

e Affine logic: Use every variable at most once!

¢ Relevant logic: Use every variable at least once!

* Ordered logic: Use every variable once, in order??

Substructural Type Systems

Via Curry-Howard, every substructural logic becomes a
substructural type system:

e Linear logic: Use every variable exactly once!

e Affine logic: Use every variable at most once!

¢ Relevant logic: Use every variable at least once!

* Ordered logic: Use every variable once, in order??

F (Ax:int.x 4 x):int — int

Substructural Type Systems

Via Curry-Howard, every substructural logic becomes a
substructural type system:

e Linear logic: Use every variable exactly once!

e Affine logic: Use every variable at most once!

¢ Relevant logic: Use every variable at least once!

* Ordered logic: Use every variable once, in order??

F (Ax:int.x 4 x):int — int F (Ax:int.x 4 x) :int —o int

Applications of Substructural Types

Imagine a language with pointers. You can allocate memory,
load and store through pointers, and free memory:

let p = malloc4in
store p ((load p) + 38);
free p

26

Applications of Substructural Types

Imagine a language with pointers. You can allocate memory,
load and store through pointers, and free memory:

let p = malloc4in

store p ((load p) + 38);
free p

Everyone who has ever written C has written a double-free bug:

let p = malloc 4 in
free p;
free p

Applications of Substructural Types

The unsafe (C-like) load and store “functions” have these types:

store:Va. (a ptr x) — void load:Va. o ptr — «

27

Applications of Substructural Types

The unsafe (C-like) load and store “functions” have these types:
store:Va. (a ptr x) — void load:Va. o ptr — «
The obvious linear versions are too restrictive:

store:Va. (« ptr x a) —o void load: Vo o ptr — «

27

Applications of Substructural Types

The unsafe (C-like) load and store “functions” have these types:
store:Va. (a ptr x) — void load:Va. o ptr — «
The obvious linear versions are too restrictive:
store:Va. (« ptr x a) —o void load: Vo o ptr — «

The trick is to “thread through” the pointer so you get a copy
back on non-destructive operations:

store:Va. (a ptrxa) — a ptr load:Va. a ptr —o (a ptrx «)

The destructive free function still consumes its argument and
doesn’t give it back.

Substructural Types for Memory Safety

@® < cyclone.thelanguageorg & © »

Cyclone is a safe dialect of C.

Cyclone is like C: it has pointers and pointer
arithmetic, structs, arrays, goto, manual memory
management, and C's preprocessor and syntax.

Cyclone adds features such as pattern matching,
algebraic datatypes, exceptions, region-based
memory management, and optional garbage
collection.

Cyclone is safe: pure Cyclone programs are not

Substructural Types for Memory Safety

@® < cyclone.thelanguageorg & © »

Cyclone is a safe dialect of C.

Cyclone is like C: it has pointers and pointer
arithmetic, structs, arrays, goto, manual memory
management, and C's preprocessor and syntax.

Cyclone adds features such as pattern matching,
algebraic datatypes, exceptions, region-based
memory management, and optional garbage
collection.

Cyclone is safe: pure Cyclone programs are not

