
JOURNAL OF COMPUTER AND SYSTEM SCIENCES 17, 348-375 (1978)

A Theory of Type Polymorphism in Programming

ROBIN MILNER

Computer Science Department, Vm+ersity of Edinburgh, Edinburgh, Scotland

Received October 10, 1977; revised April 19, 1978

The aim of this work is largely a practical one. A widely employed style of programming,
particularly in structure-processing languages which impose no discipline of types,
entails defining procedures which work well on objects of a wide variety. We present a
formal type discipline for such polymorphic procedures in the context of a simple pro-
gramming language, and a compile time type-checking algorithm w which enforces the
discipline. A Semantic Soundness Theorem (based on a formal semantics for the language)
states that well-type programs cannot “go wrong” and a Syntactic Soundness Theorem
states that if fl accepts a program then it is well typed. We also discuss extending these
results to richer languages; a type-checking algorithm based on w is in fact already
implemented and working, for the metalanguage ML in the Edinburgh LCF system,

1. INTRODUCTION

The aim of this work is largely a practical one. A widely employed style of programming,
particularly in structure-processing languages which impose no discipline of types
(LISP is a perfect example), entails defining procedures which work well on objects of
a wide variety (e.g., on lists of atoms, integers, or lists). Such flexibility is almost essential
in this style of programming; unfortunately one often pays a price for it in the time taken
to find rather inscrutable bugs-anyone who mistakenly applies CDR to an atom in
LISP, and finds himself absurdly adding a property list to an integer, will know the
symptoms. On the other hand a type discipline such as that of ALGOL 68 [22] which
precludes the flexibility mentioned above, also precludes the programming style which
we are talking about. ALGOL 60 was more flexible-in that it required procedure
parameters to be specified only as “procedure” (rather than say “integer to realprocedure”)
-but the flexibility was not uniform, and not sufficient.

An early discussion of such flexibility can be found in Strachey [19], who was probably
the first to call it polymorphism. In fact he qualified it as “parametric” polymorphism,
in contrast to what he called “adhoc” polymorphism. An example of the latter is the use
of “+” to denote both integer and real addition (in fact it may be further extended to
denote complex addition, vector addition, etc.); this use of an identifier at several distinct
types is often now called “overloading,” and we are not doncerned with it in this paper.

In this paper then, we present and justify one method of gaining type flexibility, but
also retaining a discipline which ensures robust programs. We have evidence that this

348
0022-0000/78/0173-0348$02.00/0
Copyright 8 1978 by Academic Press, Inc.
All rights of reproduction in any form reserved.

FPGA

Actual Silicon

RTL
register-transfer level

Verilog VHDL Bluespec Chisel

FPGA

RTL
register-transfer level

Assembly

CPU

:

:
::

CC

RTL
register-transfer level

C

High-Level Synthesis

474 IEEE TRANSACTIONS ON COMPUTER-AIDED DESIGN OF INTEGRATED CIRCUITS AND SYSTEMS, VOL. 30, NO. 4, APRIL 2011

very popular approach to system-level verification [36].
Designers commonly use SystemC TLMs to describe
virtual software/hardware platforms, which serve three
important purposes: early embedded software devel-
opment, architectural modeling and exploration, and
functional verification. The wide availability of SystemC
functional models directly drives the need for SystemC-
based HLS solutions, which can automatically generate
RTL code through a series of formal constructive trans-
formations. This avoids slow and error-prone manual
RTL re-coding, which is the standard practice in the
industry today.

5) Trend toward extensive use of accelerators and
heterogeneous SoCs: Many SoCs, or even chip
multiprocessors move toward inclusion of many
accelerators (or algorithmic blocks), which are built
with custom architectures, largely to reduce power
compared to using multiple programmable processors.
According to ITRS prediction [111], the number of on-
chip accelerators will reach 3000 by 2024. In FPGAs,
custom architectures for algorithmic blocks provide
higher performance in a given amount of resources than
synthesized soft processors. These algorithmic blocks
are particularly appropriate for HLS.

Although these reasons for adopting HLS design methodol-
ogy are common to both ASIC and FPGA designers, we also
see additional forces that push the FPGA designers for faster
adoption of HLS tools.

1) Less pressure for formal verification: The ASIC manu-
facturing cost in nanometer integrated circuit (IC) tech-
nologies is well over $1M [111]. There is tremendous
pressure for the ASIC designers to achieve first tape-
out success. Yet formal verification tools for HLS are
not mature, and simulation coverage can be limited
for multimillion gate SoC designs. This is a significant
barrier for HLS adoption in the ASIC world. However,
for FPGA designs, in-system simulation is possible
with much wider simulation coverage. Design iterations
can be done quickly and inexpensively without huge
manufacturing costs.

2) Ideal for platform-based synthesis: Modern FPGAs em-
bed many predefined/fabricated IP components, such
as arithmetic function units, embedded memories, em-
bedded processors, and embedded system buses. These
predefined building blocks can be modeled precisely
ahead of time for each FPGA platform and, to a large
extent, confine the design space. As a result, it is possible
for modern HLS tools to apply a platform-based design
methodology [52] and achieve higher quality of results
(QoR).

3) More pressure for time-to-market: FPGA platforms are
often selected for systems where time-to-market is criti-
cal, in order to avoid long chip design and manufacturing
cycles. Hence, designers may accept increased perfor-
mance, power, or cost in order to reduce design time.
As shown in Section IX, modern HLS tools put this
tradeoff in the hands of a designer allowing significant

reduction in design time or, with additional effort, QoR
comparable to hand-written RTL.

4) Accelerated or reconfigurable computing calls for
C/C++ based compilation/synthesis to FPGAs: Recent
advances in FPGAs have made reconfigurable com-
puting platforms feasible to accelerate many high-
performance computing (HPC) applications, such as
image and video processing, financial analytics, bioin-
formatics, and scientific computing applications. Since
RTL programming in VHDL or Verilog is unacceptable
to most application software developers, it is essential to
provide a highly automated compilation/synthesis flow
from C/C++ to FPGAs.

As a result, a growing number of FPGA designs are
produced using HLS tools. Some example application domains
include 3 G/4 G wireless systems [39], [82], aerospace applica-
tions [76], image processing [28], lithography simulation [13],
and cosmology data analysis [53]. Xilinx is also in the process
of incorporating HLS solutions in their Video Development Kit
[118] and DSP Develop Kit [98] for all Xilinx customers.

This paper discusses the reasons behind the recent success
in deploying HLS solutions to the FPGA community. In Sec-
tion II, we review the evolution of HLS systems and summa-
rize the key lessons learned. In Sections III–VIII, using a state-
of-art HLS tool as an example, we discuss some key reasons
for the wider adoption of HLS solutions in the FPGA design
community, including wide language coverage and robust
compilation technology, platform-based modeling, advance-
ment in core HLS algorithms, improvements on simulation and
verification flow, and the availability of domain-specific design
templates. Then, in Section IX, we present the HLS results on
several real-life industrial designs and compare with manual
RTL implementations. Finally, in Section X, we conclude this
paper with discussions of future challenges and opportunities.

II. Evolution of HLS for FPGA

In this section we briefly review the evolution of HLS
by looking at representative tools. Compilers for high-level
languages have been successful in practice since the 1950s.
The idea of automatically generating circuit implementations
from high-level behavioral specifications arises naturally with
the increasing design complexity of ICs. Early efforts (in
the 1980s and early-1990s) on HLS were mostly research
projects, where multiple prototype tools were developed to
call attention to the methodology and to experiment with
various algorithms. Most of those tools, however, made rather
simplistic assumptions about the target platform and were not
widely used. Early commercialization efforts in the 1990s and
early-2000s attracted considerable interest among designers,
but also failed to gain wide adoption, due in part to usability
issues and poor QoRs. More recent efforts in HLS have
improved usability by increasing input language coverage and
platform integration, as well as improving QoRs.

A. Early Efforts

Since the history of HLS is considerably longer than that
of FPGAs, most early HLS tools targeted ASIC designs.

Verilog 
is unacceptable

we must program
FPGAs in C⇒

int A[10];
int B[10];
for (int i = 0; i < 10; i++) {
 int x = A[i];
 int y = x * 5;
 B[i] = y;
}

int A[10]

int B[10]

* loop body

int A[10]

int B[10]

* * * **

int A[10];
int B[10];
for (int i = 0; i < 10; i++) {
 #pragma HLS UNROLL factor=5
 int x = A[i];
 int y = x * 5;
 B[i] = y;
}

#pragma HLS ARRAY_PARTITION variable=A factor=5
#pragma HLS ARRAY_PARTITION variable=B factor=5

* * * **

int A[10]

int B[10]

int A[10];
int B[10];
for (int i = 0; i < 10; i++) {
 #pragma HLS UNROLL factor=5
 int x = A[i];
 int y = x * 5;
 B[i] = y;
}

#pragma HLS ARRAY_PARTITION variable=A factor=5
#pragma HLS ARRAY_PARTITION variable=B factor=5

Seashell:
A type system that guarantees that a high-level program
has equivalent semantics in an FPGA implementation.

decl A: bit<32>[10];
for (...) {
 let x = A[i];
 A[i+1] = x + 1;
}

!14

Memory declaration.

(Not just an array declaration.)

decl A: bit<32>[10 bank 5];
for (...) {
 let x = A[i];
 A[i+1] = x + 1;
}

!15

Banking is part of the memory’s type.

decl A: bit<32>[10];
for (...) {
 let x = A[i];
 A[i+1] = x + 1;
}

!16

Type error: `A` already used in this context

!17

A ; B

Allow A and B to run in parallel.

!18

let x = A[i];

A[i + i] = x + 1;

Conflict! Cannot read from and write to A simultaneously.

decl A: bit<32>[10 bank 5];
for (...) {
 let x = A[i]

 A[i+1] = x + 1;
}

!19

A logical time step.

!20

A --- B

Run A and then run B, sequentially.

!21

let x = A[i];

A[i + 1] = x + 1;

No conflict. Statements are guaranteed to run in separate cycles.

!22

{ A --- B };
{ C --- D };

E

Specify complex parallel behavior using --- and ;.

decl A: bit<32>[10 bank 5];
decl B: bit<32>[10 bank 5];
for (...) unroll 5 {
 B[i] = A[i] + 1;
}

!23

Unrolling affects the type of i  
to indicate that it touches 5 locations.

decl A: bit<32>[10 bank 5];
let sum = 0;
for (...) unroll 5 {
 let x = A[i] + 1;
} combine {
 sum += x;
}

!24

Explicitly delimit non-parallelizable

computations such as reductions.

decl A: bit<32>[10 bank 5];
let sum = 0;
for (...) unroll 5 {
 let x = A[i] + 1;
} combine {
 sum += x;
}

!25

Well-typed programs preserve the semantics of the unannotated program.

decl A: bit<32>[10 bank 5];
let sum = 0;
for (...) unroll 5 {
 let x = A[i] + 1;
} combine {
 sum += x;
}

!26

Well-typed programs preserve the semantics of the unannotated program.

FPGA

RTL
register-transfer level

Assembly

CPU

:

:
::

CSeashell

capra.cs.cornell.edu/fuse

!28

