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Machine Teaching: Key Components
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• Type and complexity of task

• Type and model of learning agent

• Teacher’s knowledge and observability

Machine Teaching: Problem Space
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[arXiv ’19]



Applications: Language Learning
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• Over 300+ million students
• Based on spaced repetition of flash cards

Can we compute optimal personalized schedule of repetition?



Setup: Learning via Flashcards
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• !: number of concepts (flashcards)
• ":  total time learning steps



Teaching Interaction using Flashcards
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Research question: What is an optimal schedule of displaying cards?
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Interaction at time ! = 1, 2, …'
1. Teacher displays a flashcard () ∈ {1,2, . . , -}
2. Learner’s recall is /) ∈ 0, 1
3. Teacher provides the correct answer

1

2

3



Background on Teaching Policies 
Example setup
• ! = 5 concepts given by $, &, ', (, )
• * = 20

Random teaching policy

Round-robin teaching policy
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$ → & → $ → ) → ' → ( → $ → ( → ' → $ → & → ) → $ → & → ( → ) →

$ → & → ' → ( → ) → $ → & → ' → ( → ) → $ → & → ' → ( → ) → $ →

Key limitation: Schedule agnostic to learning process



Background on Teaching Policies 
The Pimsleur method (1967)
• Used in mainstream language learning platforms
• Based on spaced repetition ideas

• Spacing effect: practice should spread out over time
• Lag effect: spacing between practices should gradually increase
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! → # → ! → # → $ → ! → $ → # → % → $ → % → ! → # → % → $ → & →

Key limitation: Non-adaptive schedule ignores learner’s responses



Background on Teaching Policies 
The Leitner system (1972)
• Used by Duolingo in its first launch
• Adaptive spacing intervals

9

Key limitation: No guarantees on the optimality of the schedule

Schedule 1

Schedule 2

! → # → ! → # → $ → ! → $ → # → % → $ → % → ! → # → % → $ → & →

! → ! → # → ! → # → $ → ! → $ → ! → # → $ → ! → # → ! → % → $ →



Half-life regression (HLR) model
• Introduced by [Settles, Meeder @ ACL’16]
• History up to time ! given by (#$:&, ($:&)
• For a concept #:

• Last time step when concept # was taught is *&+ ∈ {1, . . , !}
• Learner’s mastery for concept # at time ! is ℎ&+

Recall probability in future under HLR model
• Probability to recall concept # at future time 2 ∈ {! + 1, . . , 4} is

Learner: Modeling Memory & Responses
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5+ 2, #$:&, ($:& = 28 9:8;<=
><=



Learner: Modeling Memory & Responses
• Recall probability based on exponential forgetting curve 

Δ": time past since concept # was taught
ℎ": current “half-life” of concept #

• Half-life ℎ" changes when learner is taught concept #
• Changes parameterized by (&", (")
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*" +, #,:., /,:. = 22
34
54

ℎ" += &"

ℎ" += ("

Δ" = ℎ"

Δ" ≫ ℎ"



Teacher: Scheduling as Optimization
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Teacher’s objective function
• Given a sequence of concepts and observations !":$, &":$ , we define

Optimization problem
• Teaching policy ': !":()", &":()" → {1,2, . . , /}
• Denote average utility of a policy ' as 1 ' ∶= 4 5,6 7 !":$8 , &":$8
• Optimization problem is given by

7 !":$, &":$ = 1
/9:5;"

<
:
(;"

$
=5 > + 1, !":(, &":(

Area under the curve

'∗ = argmax8 1 '



Teacher: Algorithm
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Adaptive greedy algorithm
• for ! = 1, 2, …':

• Select () ← argmax 0 1 2 3 (4:)64 ⊕ (, 84:)64 ⊕ 8 − 3 (4:)64, 84:)64
• Observe learner’s recall 8) ∈ 0, 1
• Update (4:) ← (4:)64 ⨁(); 84:) ← 84:)64 ⨁8)



Teacher: Theoretical Guarantees
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Characteristics of the problem
• Adaptive sequence optimization
• Non-submodular

• Gain of a concept ! can increase given longer history
• Captured by submodularity ratio " over sequences

• Post-fix non-monotone
• # orange⨁ blue < # blue
• Captured by curvature ω over sequences

!



Teacher: Theoretical Guarantees
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Guarantees for general case (any memory model)
• Utility of !"# (greedy policy) compared to !$%& is given by

• Illustration with '=15	and ,=3	concepts using HLR model

Theorem 1

Corollary 2

. !"# ≥ . !$%& 0
123

4 5461
' 7

829

163
1 − ;8 < 58'

≥ . !$%& 1
;=>?

1 − @6ABCD < EBFG

15



Teacher: Theoretical Guarantees
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Guarantees for the HLR model
• Consider the task of teaching ! concepts where each concept is 

following an independent HLR model with the same parameters 
"# = %, '# = % ∀ ) ∈ {1,2, . . , !}

Theorem 3: A sufficient condition for the algorithm to achieve a high 
utility of at least (1 − 2) is given by T ≥ 5 6789:; <=

> .



Results: Simulated Learners
HLR learner model
• Equal proportion of two types of concepts

• easy concepts with parameters ! = 10, & = 5
• difficult concepts with parameters ! = 3, & = 1.5

Algorithms
• RD: Random, RR: Round-robin
• LR: Least-recall (generalization of Pimsleur and Leitner system)
• GR: Our algorithm

Performance metrics
• Objective function value
• Recall in near future after finishing teaching (Recall at “* + 10”)
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Results: Simulated Learners
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Varying ! (fix " = 20)

Objective value

Varying ' (fix ( = 60)

Recall in future

10 10



Results: Human Learners
Online learning platforms
• German vocabulary: https://www.teaching-german.cc/
• Species names: https://www.teaching-biodiversity.cc/

• Performance based on (post-quiz score – pre-quiz score)
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https://www.teaching-german.cc/
https://www.teaching-biodiversity.cc/


Results (German): Human Learners
• 80 participants from a crowdsourcing platform (20 per algorithm)
• Dataset of 100 English-German word pairs

• GR parameters: ! = 6, % = 2 for all concepts
• ' = 40, * = 15
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GR LR RR RD

Avg. gain 0.572 0.487 0.462 0.467

p-value - 0.0538 0.0155 0.0119



Results (Biodiversity): Human Learners
• 320 participants from a crowdsourcing platform (80 per algorithm)
• Dataset of 50 animal images of common and rare species

• GR parameters: ! = 10, & = 5 for common, ! = 3, & = 1.5 for rare 
• * = 40, , = 15
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GR LR RR RD
Avg. gain 0.475 0.411 0.390 0.251
p-value - 0.0021 0.0001 0.0001

GR LR RR RD
Avg. gain 0.766 0.668 0.601 0.396
p-value - 0.0001 0.0001 0.0001

All species Rare species



• Type and complexity of task

• Type and model of learning agent

• Teacher’s knowledge and observability

Machine Teaching: Problem Space
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• Type and complexity of task

• Type and model of learning agent

• Teacher’s knowledge and observability

Machine Teaching: Problem Space
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[NeurIPS ’18]
[IJCAI ’19]
[arXiv ’19]



Applications: Training Simulators
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Key limitation: No automated or personalized curriculum of tasks



Applications: Skill Assessment and Practice
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Key limitation: No automated or personalized curriculum of tasks



Sequential Decision Making: Ingredients
Key ingredients
• A sequence of actions with long term consequences
• Delayed feedback

• Safely reaching the destination in time
• Successfully solving the exercise
• Winning or losing a game

• Main components
• Environment representing the problem
• Student is the learning agent taking actions
• Teacher helping the student to learn faster
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Sequential Decision Making: Environment
Markov Decision Process ! ≔ ($, &, ', $()(*, $+),, -)
• $: states of the environment
• &: actions that can be taken by agent
• '(/0|/, 2): the transition of the environment when action is taken
• $()(*: defines a set of initial states
• $+),: defines a set of terminal states
• -(/, 2): reward function

27



Sequential Decision Making: Policy
Agent’s policy !
• "($) → ': A deterministic policy  
• "($) → ((') : A stochastic policy

Utility of a policy
• Expected total reward when executing a policy " is given by

• Agent’s goal is to learn an optimal policy

28

)* = ,-, * /
0
1 $0, '0

"∗ = argmax* )*



An Example: Car Driving Simulator
• State ! represented by a feature vector "(!)

(location, speed, acceleration, car-in-front, HOV, …)

• Action % could be discrete/continuous
{left, straight, right, brake, speed+, speed-, …}

• Transition & !' !, % defines how world evolves 
(stochastic as it depends on other drivers in the environment)

• ) !, % defines immediate reward, e.g.,
• 100 if ! ∈ +,-.
• -1 if ! ∉ +,-.
• -10 if ! represents ``accident”

• Policy 0∗ dictates how an agent should drive
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An Example: Tutoring System for Algebra
• State ! represented by the current layout of variables
• Action " could be {move, combine, distribute, stop, …}
• Transition # !$ !, " is deterministic
• & !, " defines immediate reward, e.g., 

• 100 if ! ∈ ()*+
• -1 if ! ∉ ()*+

30



An Example: Tutoring System for Coding
• State ! could be represented by

• raw source code

• abstract syntax tree (AST)

• execution behavior

• ...

• Action " could be eligible updates (e.g., allowed by the interface)

31Image credits: [Piech et al. @ LAK’15]

HoC Problem 4

HoC Problem 18



Learning Settings: Reward Signals
• Standard setting in reinforcement learning (RL)
• ! is known, " is known

• Mode-based planning algorithms (e.g., Dynamic Programming)
• !, " are both unknown

• Model-free learning algorithms (e.g., Q-learning)

• A wrong model of ! is known
• Algorithms with robustness and safety criteria
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(Book) Reinforcement Learning: An Introduction [Barto and Sutton 2018]



Learning Settings: Demonstrations
• Learning via observing behavior of another agent
• Behavioral cloning

• Direct policy learning from observed demonstrations
• E.g., Dagger algorithm

• Inverse reinforcement learning (IRL)
• Recover reward function explaining observed demonstrations
• E.g., Maximum Causal Entropy algorithm (MCE-IRL)

33

(Survey) An Algorithmic Perspective on Imitation Learning [Osa et al. 2018]



The Role of Teacher: Research Problems
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Teaching via
demonstrations 

Teaching via 
reward signals

Optimizing curriculum 
of tasks

Denser rewards 
(e.g., defining sub-goals)

Optimizing sequence 
of demonstrations

Accounting for
model mismatch

Providing advice 
(e.g., correcting errors)

[IJCAI ’19]

[NeurIPS ’18]
[arXiv ’19]

Optimizing curriculum 
of tasks



• Type and complexity of task

• Type and model of learning agent

• Teacher’s knowledge and observability

Machine Teaching: Problem Space
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[NeurIPS ’18]
[IJCAI ’19]
[arXiv ’19]



• Type and complexity of task

• Type and model of learning agent

• Teacher’s knowledge and observability

Machine Teaching: Problem Space
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Machine Teaching: Applications
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Educational 
settings

Language 
learning

Biodiversity 
monitoring

Online education
via MOOCs

Skill assessment 
and practice

Training 
simulators



Machine Teaching Group @ MPI-SWS
• Webpage  

https://machineteaching.mpi-sws.org/

• Recent publications  
https://machineteaching.mpi-sws.org/publications.html

• Contact
adishs@mpi-sws.org

• Slides
https://machineteaching.mpi-sws.org/files/talks/cmmrs2019-machineteaching-day1.pdf
https://machineteaching.mpi-sws.org/files/talks/cmmrs2019-machineteaching-day2.pdf
https://machineteaching.mpi-sws.org/files/talks/cmmrs2019-machineteaching-day3.pdf
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