Machine Teaching

Adish Singla

CMMRS, August 2019

Machine Teaching: Key Components

Machine Teaching: Problem Space

Teacher's knowledge and observability

Applications: Language Learning

- Over 300+ million students
- Based on **spaced repetition** of flash cards

Can we compute **optimal personalized schedule** of repetition?

Setup: Learning via Flashcards

- n: number of concepts (flashcards)
- T: total time learning steps

5

Teaching Interaction using Flashcards

Interaction at time t = 1, 2, ..., T

- 1. Teacher displays a flashcard $x_t \in \{1, 2, ..., n\}$
- 2. Learner's recall is $y_t \in \{0, 1\}$
- 3. Teacher provides the correct answer

Research question: What is an optimal schedule of displaying cards?

Background on Teaching Policies

Example setup

- n = 5 concepts given by $\{a, b, c, d, e\}$
- T = 20

Random teaching policy

 $a \rightarrow b \rightarrow a \rightarrow e \rightarrow c \rightarrow d \rightarrow a \rightarrow d \rightarrow c \rightarrow a \rightarrow b \rightarrow e \rightarrow a \rightarrow b \rightarrow d \rightarrow e \rightarrow$

Round-robin teaching policy

Key limitation: Schedule agnostic to learning process

Background on Teaching Policies

The Pimsleur method (1967)

- Used in mainstream language learning platforms
- Based on spaced repetition ideas
 - Spacing effect: practice should spread out over time
 - Lag effect: spacing between practices should gradually increase

Key limitation: Non-adaptive schedule ignores learner's responses

Background on Teaching Policies

The Leitner system (1972)

- Used by Duolingo in its first launch
- Adaptive spacing intervals

Key limitation: No guarantees on the optimality of the schedule

C

a

Learner: Modeling Memory & Responses

Half-life regression (HLR) model

- Introduced by [Settles, Meeder @ ACL'16]
- History up to time t given by $(x_{1:t}, y_{1:t})$
- For a concept *x*:
 - Last time step when concept x was taught is $l_t^x \in \{1, ..., t\}$
 - Learner's mastery for concept x at time t is h_t^x

Recall probability in future under HLR model

• Probability to recall concept x at future time $\tau \in \{t + 1, ..., T\}$ is

$$g^{x}(\tau, (x_{1:t}, y_{1:t})) = 2^{-\binom{(\tau - l_{t}^{x})}{h_{t}^{x}}}$$

Learner: Modeling Memory & Responses

• Recall probability based on exponential forgetting curve

 $g^{x}(\tau,(x_{1:t},y_{1:t})) = 2^{-\left(\frac{\Delta^{x}}{h^{x}}\right)}$

 Δ^{x} : time past since concept x was taught h^{x} : current "half-life" of concept x

• Half-life h^x changes when learner is taught concept x

-

• Changes parameterized by (a^x, b^x)

$$\checkmark h^x += a^x$$

$$(x h^x + b^x)$$

Teacher: Scheduling as Optimization

Teacher's objective function

• Given a sequence of concepts and observations $x_{1:T}$, $y_{1:T}$, we define

Optimization problem

- Teaching policy $\pi: (x_{1:t-1}, y_{1:t-1}) \to \{1, 2, ..., n\}$
- Denote average utility of a policy π as $F(\pi) := \mathbb{E}_{(x,y)} \left[f(x_{1:T}^{\pi}, y_{1:T}^{\pi}) \right]$
- Optimization problem is given by

 $\pi^* = \operatorname{argmax}_{\pi} F(\pi)$

Teacher: Algorithm

Adaptive greedy algorithm

- for t = 1, 2, ... T:
 - Select $x_t \leftarrow \operatorname{argmax}_x \mathbb{E}_{(y)}[f(x_{1:t-1} \oplus x, y_{1:t-1} \oplus y)] f(x_{1:t-1}, y_{1:t-1})$
 - Observe learner's recall $y_t \in \{0, 1\}$
 - Update $x_{1:t} \leftarrow x_{1:t-1} \bigoplus x_t$; $y_{1:t} \leftarrow y_{1:t-1} \bigoplus y_t$

Teacher: Theoretical Guarantees

Characteristics of the problem

- Adaptive sequence optimization
- Non-submodular
 - Gain of a concept *x* can increase given longer history
 - Captured by submodularity ratio γ over sequences
- Post-fix non-monotone
 - $f(\text{orange} \oplus \text{blue}) < f(\text{blue})$
 - Captured by curvature
 over sequences

Teacher: Theoretical Guarantees

Guarantees for general case (any memory model)

• Utility of π^{gr} (greedy policy) compared to π^{opt} is given by

$$F(\pi^{\text{gr}}) \ge F(\pi^{\text{opt}}) \sum_{t=1}^{T} \left(\frac{\gamma_{T-t}}{T} \prod_{\tau=0}^{t-1} \left(1 - \frac{\omega_{\tau} \cdot \gamma_{\tau}}{T} \right) \right)$$
 Theorem 1
$$\ge F(\pi^{\text{opt}}) \frac{1}{\omega_{\text{max}}} (1 - e^{-\omega_{\text{max}} \cdot \gamma_{\text{min}}})$$
 Corollary 2

• Illustration with T=15 and n=3 concepts using HLR model

Teacher: Theoretical Guarantees

Guarantees for the HLR model

• Consider the task of teaching *n* concepts where each concept is following an independent HLR model with the same parameters $(a^x = z, b^x = z) \forall x \in \{1, 2, ..., n\}$

Theorem 3: A sufficient condition for the algorithm to achieve a high utility of at least $(1 - \epsilon)$ is given by $T \ge O\left(\frac{n^2 \cdot \exp(-z)}{\epsilon}\right)$.

Results: Simulated Learners

HLR learner model

- Equal proportion of two types of concepts
 - easy concepts with parameters (a = 10, b = 5)
 - difficult concepts with parameters (a = 3, b = 1.5)

Algorithms

- RD: Random, RR: Round-robin
- LR: Least-recall (generalization of Pimsleur and Leitner system)
- **GR**: Our algorithm

Performance metrics

- Objective function value
- Recall in near future after finishing teaching (Recall at "T + 10")

Results: Simulated Learners

Results: Human Learners

Online learning platforms

- German vocabulary: <u>https://www.teaching-german.cc/</u>
- Species names: <u>https://www.teaching-biodiversity.cc/</u>

Performance based on (post-quiz score – pre-quiz score)

Results (German): Human Learners

- 80 participants from a crowdsourcing platform (20 per algorithm)
- Dataset of 100 English-German word pairs
 - GR parameters: (a = 6, b = 2) for all concepts
- T = 40, n = 15

	GR	LR	RR	RD
Avg. gain	0.572	0.487	0.462	0.467
p-value	-	0.0538	0.0155	0.0119

Results (Biodiversity): Human Learners

- 320 participants from a crowdsourcing platform (80 per algorithm)
- Dataset of 50 animal images of common and rare species
 - GR parameters: (a = 10, b = 5) for common, (a = 3, b = 1.5) for rare
- T = 40, n = 15

All species

Rare species

	GR	LR	RR	RD		GR	LR	RR	RD
Avg. gain	0.475	0.411	0.390	0.251	Avg. gain	0.766	0.668	0.601	0.396
p-value	-	0.0021	0.0001	0.0001	p-value	-	0.0001	0.0001	0.0001

(a) Common: Owl, Cat, Horse, Elephant, Lion, Tiger, Bear

(b) Rare: Angwantibo, Olinguito, Axolotl, Ptarmigan, Patrijshond, Coelacanth, Pyrrhuloxia

Machine Teaching: Problem Space

Teacher's knowledge and observability

Machine Teaching: Problem Space

Teacher's knowledge and observability

Applications: Training Simulators

VIRTAMED^O WE SIMULATE REALITY

Key limitation: No automated or personalized curriculum of tasks

Applications: Skill Assessment and Practice

Key limitation: No automated or personalized curriculum of tasks

Sequential Decision Making: Ingredients

Key ingredients

- A sequence of actions with long term consequences
- Delayed feedback
 - Safely reaching the destination in time
 - Successfully solving the exercise
 - Winning or losing a game
- Main components
 - Environment representing the problem
 - **Student** is the learning agent taking actions
 - Teacher helping the student to learn faster

Sequential Decision Making: Environment

Markov Decision Process $M := (S, A, P, S_{init}, S_{end}, R)$

- *S*: states of the environment
- A: actions that can be taken by agent
- P(s'|s, a): the transition of the environment when action is taken
- *S_{init}*: defines a set of initial states
- *S_{end}*: defines a set of terminal states
- *R*(*s*, *a*): reward function

Sequential Decision Making: Policy

Agent's policy π

- $\pi(s) \rightarrow a$: A deterministic policy
- $\pi(s) \rightarrow P(a)$: A stochastic policy

Utility of a policy

• Expected total reward when executing a policy π is given by

$$U^{\pi} = \mathbb{E}_{P,\pi} \left[\sum_{\tau} R(s_{\tau}, a_{\tau}) \right]$$

• Agent's goal is to learn an optimal policy

$$\pi^* = \operatorname{argmax}_{\pi} U^{\pi}$$

An Example: Car Driving Simulator

- State *s* represented by a feature vector $\phi(s)$ (location, speed, acceleration, car-in-front, HOV, ...)
- Action *a* could be discrete/continuous {left, straight, right, brake, speed+, speed-, ...}

- Transition P(s'|s, a) defines how world evolves (stochastic as it depends on other drivers in the environment)
- *R*(*s*, *a*) defines immediate reward, e.g.,
 - 100 if $s \in S_{end}$
 - -1 if $s \notin S_{end}$
 - -10 if s represents ``accident"
- Policy π^* dictates how an agent should drive

An Example: Tutoring System for Algebra

- State s represented by the current layout of variables
- Action a could be {move, combine, distribute, stop, ...}
- Transition P(s'|s, a) is deterministic
- R(s, a) defines immediate reward, e.g.,
 - 100 if $s \in S_{end}$
 - -1 if $s \notin S_{end}$

An Example: Tutoring System for Coding

- State s could be represented by
 - raw source code
 - abstract syntax tree (AST)
 - execution behavior

• Action *a* could be eligible updates (e.g., allowed by the interface)

Image credits: [Piech et al. @ LAK'15]

Learning Settings: Reward Signals

- Standard setting in reinforcement learning (RL)
- *P* is known, *R* is known
 - Mode-based planning algorithms (e.g., Dynamic Programming)
- *P*, *R* are both unknown
 - Model-free learning algorithms (e.g., Q-learning)
- A wrong model of *P* is known
 - Algorithms with robustness and safety criteria

(Book) Reinforcement Learning: An Introduction [Barto and Sutton 2018]

Learning Settings: Demonstrations

- Learning via observing behavior of another agent
- Behavioral cloning
 - Direct policy learning from observed demonstrations
 - E.g., Dagger algorithm
- Inverse reinforcement learning (IRL)
 - Recover reward function explaining observed demonstrations
 - E.g., Maximum Causal Entropy algorithm (MCE-IRL)

(Survey) An Algorithmic Perspective on Imitation Learning [Osa et al. 2018]

The Role of Teacher: Research Problems

Machine Teaching: Problem Space

Machine Teaching: Problem Space

• Type and complexity of task

• Type and model of learning agent

Teacher's knowledge and observability

Machine Teaching: Applications

Machine Teaching Group @ MPI-SWS

• Webpage

https://machineteaching.mpi-sws.org/

• Recent publications

https://machineteaching.mpi-sws.org/publications.html

Contact

adishs@mpi-sws.org

Slides

https://machineteaching.mpi-sws.org/files/talks/cmmrs2019-machineteaching-day1.pdf https://machineteaching.mpi-sws.org/files/talks/cmmrs2019-machineteaching-day2.pdf https://machineteaching.mpi-sws.org/files/talks/cmmrs2019-machineteaching-day3.pdf