Machine Teaching

Adish Singla

CMMRS, August 2019

Machine Teaching: Key Components

Machine Teaching: Problem Space

Cognitive Model of Skill Acquisition

Cognitive tutors

- Used by millions of students for K-12 education
 - https://www.carnegielearning.com/
 - <u>https://new.assistments.org/</u>

Bayesian Knowledge Tracing (BKT)

- Introduced by [Corbett, Anderson '95]
- Knowledge Components (KC)
 - A learning task is associated with a set of skills
 - Practicing a skill leads to mastery of that skill

Task: Geometry and Algebra

Knowledge components (KCs) and exercises

k = c: Congruent triangles

k = v: One variable equations

Teaching Interaction under BKT

- Each KC k is associated with a knowledge state h^k
 - $h^k = 1$ represents that the skill has been mastered
 - $h^k = 0$ otherwise

Interaction at time t = 1, 2, ... T

- Denote the value of h^k at the end of time t as h_t^k
- Initialize h^k₀ for all KCs
- At time *t*:
 - Teacher provides exercise x_t associated with KC k
 - Learner responds $y_t \in \{0, 1\}$ with knowledge h_{t-1}^k
 - Learner updates knowledge from h_{t-1}^k to h_t^k

BKT Learner Model

Learner's initial knowledge (one parameter per KC)

• Probability of mastery before teaching $P_{\text{init}}^k \coloneqq P(h_0^k = 1)$

Learner's response (two parameters per KC)

- Conditional probability of guessing $P_{guess}^k := P(y_t = 1 | h_{t-1}^k = 0)$
- Conditional probability of *slipping* $P_{slip}^k := P(y_t = 0 | h_{t-1}^k = 1)$

Learner's update (one parameter per KC)

• Conditional probability of *learning* $P_{\text{learn}}^k := P(h_t^k = 1 | h_{t-1}^k = 0)$

BKT Learner Model: HMM Representation

Hidden Markov Model (HMM) for a single KC k

BKT Learner Model: DBN Representation

Dynamic Bayesian Network (DBN) for a single KC k

BKT Learner Model: DBN Representation

 $P(Y_t = 1 \mid H_{t-1}^c, H_{t-1}^v, X_t)$

 $P(H_t^c = 1 | H_{t-1}^c, X_t)$

	$X_t = c$	$X_t = v$
$H_{t-1}^c = 0, H_{t-1}^v = 0$	P ^c _{guess}	$P_{ m guess}^{v}$
$H_{t-1}^c = 1, H_{t-1}^v = 0$	$1 - P_{\rm slip}^c$	$P_{ m guess}^{v}$
$H_{t-1}^c = 0, H_{t-1}^v = 1$	P ^c _{guess}	$1 - P_{\rm slip}^{v}$
$H_{t-1}^c = 1, H_{t-1}^v = 1$	$1 - P_{\rm slip}^c$	$1 - P_{\rm slip}^{v}$

$H_{t-1}^c = 0, X_t = c$	P ^c _{learn}
$H_{t-1}^c = 1, X_t = c$	1
$H_{t-1}^c = 0, X_t = v$	0
$H_{t-1}^c = 1, X_t = v$	1

Prediction and inference for a single KC k

- Learner's responses at the end of time $t: D_t := \{y_1, y_2, \dots, y_t\}$
- Predicting learner's response: $P(Y_t^k = 1 | D_{t-1})$
- Inferring learner's knowledge: $P(H_t^k = 1 | D_t)$ denoted as θ_t^k

Incremental computations

- Initial $\theta_0^k = P_{\text{init}}^k$ is known
- Compute $P(Y_t^k = 1 | D_{t-1})$ from θ_{t-1}^k
- Compute θ_t^k from θ_{t-1}^k and y_t

Predicting learner's response

 $P(Y_t^k = 1 \mid D_{t-1}) = (1 - P_{slip}^k) \cdot \theta_{t-1}^k + P_{guess}^k \cdot (1 - \theta_{t-1}^k)$

Derivation:

 $P(Y_t^k = 1 \mid D_{t-1}) = P(Y_t^k = 1, H_{t-1}^k = 1 \mid D_{t-1}) + P(Y_t^k = 1, H_{t-1}^k = 0 \mid D_{t-1})$ $= P(Y_t^k = 1 \mid H_{t-1}^k = 1, D_{t-1}) \cdot P(H_{t-1}^k = 1 \mid D_{t-1})$ $+ P(Y_t^k = 1 \mid H_{t-1}^k = 0, D_{t-1}) \cdot P(H_{t-1}^k = 0 \mid D_{t-1})$ $= P(Y_t^k = 1 \mid H_{t-1}^k = 1) \cdot P(H_{t-1}^k = 1 \mid D_{t-1})$ $+ P(Y_t^k = 1 \mid H_{t-1}^k = 0) \cdot P(H_{t-1}^k = 0 \mid D_{t-1})$ $= (1 - P_{slip}^k) \cdot \theta_{t-1}^k + P_{suess}^k \cdot (1 - \theta_{t-1}^k)$

Inferring learner's knowledge

 $P(H_t^k = 1 \mid D_t) = \hat{\theta}_{t-1}^k + P_{\text{learn}}^k \cdot (1 - \hat{\theta}_{t-1}^k)$

where $\hat{\theta}_{t-1}^{k}$ is an intermediate quantify computed from θ_{t-1}^{k} and y_{t}

Computing $\hat{\theta}_{t-1}^k$ by applying Bayes rule

• For
$$y_t = 1$$
, $\hat{\theta}_{t-1}^k \coloneqq \frac{(1 - P_{\text{slip}}^k) \cdot \theta_{t-1}^k}{(1 - P_{\text{slip}}^k) \cdot \theta_{t-1}^k + P_{\text{guess}}^k \cdot (1 - \theta_{t-1}^k)}$

• For
$$y_t = 0$$
, $\hat{\theta}_{t-1}^k \coloneqq \frac{P_{\text{slip}}^k \cdot \theta_{t-1}^k}{P_{\text{slip}}^k \cdot \theta_{t-1}^k + (1 - P_{\text{guess}}^k) \cdot (1 - \theta_{t-1}^k)}$

An example of prediction and inference

• Parameters: $P_{\text{init}}^{k} = 0.5$, $P_{\text{learn}}^{k} = 0.2$, $P_{\text{guess}}^{k} = 0.1$, $P_{\text{slip}}^{k} = 0.1$

Teaching Process using BKT

- Datasets publicly available
- Parameter fitting by standard techniques

BKT: Two Main Research Themes

Improving learner model

- Forgetting
- Individualization per student
- Skill discovery
 - exercises to skills mapping
 - Inter-skill similarity and prerequisite structure

Designing teaching policies

- When to stop teaching a skill?
- Optimizing the curriculum via planning in DBN

Improved Learner Models for BKT

DBN for a single KC k with forgetting

Improved Learner Models for BKT

Comparing different models [Khajah, Lindsey, Mozer @ EDM'16]

- BKT: Standard model
 - **BKT₁**: One model for all skills
 - **BKT₂:** Multiple models, one per skill
- **BKT-F**: With forgetting
- **BKT-I**: Individualization per student
- **BKT-S**: Skill discovery as part of BKT
- **BKT-FIS**: Above three extensions combined

Improved Learner Models for BKT

Comparing different models [Khajah, Lindsey, Mozer @ EDM'16]

- Dataset from
 - # students: 15,900
 - # skills: 124 (with multiple exercises per skill)
 - # student-exercise attempts: 0.5 million
- Cross-validation by splitting data based on student ids
- Performance metric: AUC (ranging from 0.5 to 1)

BKT ₁	BKT ₂	BKT-F	BKT-I	BKT-S	BKT-FIS	Deep BKT
0.67	0.73	0.83	0.785	0.76	0.825	0.86

Deep Knowledge Tracing [Piech et al. @ NIPS'15]

Designing Teaching Policies

Much less research on designing teaching policies

- The most popular way of using BKT for teaching is
 - STOP teaching skill k when $P(H_t^k = 1 | D_t) \ge 0.95$
- Planning techniques
 - Faster teaching via POMDP Planning [Rafferty et al. @ CogSci'16]
- "When to stop" instructional policies with guarantees
 - When to stop? Towards Universal Instructional Policies [Käser, Klingler, Gross @ LAK'16]
 - From Predictive Models to Instructional Policies [Rollinson, Brunskill @ LAK'15]

Cognitive Models of Skill Acquisition

Summary of BKT

- Well-studied cognitive model, used in real-world applications
- Generic model for complex learning tasks (e.g., learning Algebra)

Limitations of using cognitive models

- Difficult to design optimal teaching policies
- Generic models but might not capture fine-grained task details

Machine Teaching: Problem Space

Machine Teaching: Problem Space

Teacher's knowledge and observability

Setup: Weevil and Vespula (WV)

- Hypotheses class $\mathcal H$
 - **Green**: target hypothesis h^*
 - **Blue**: ignoring feature f₁
 - Yellow: ignoring feature f₂
 - **Red**: wrongly using feature f₂

- f₁: head-body size ratio
- f₂: head-body color contrast

Vespula

Learner: Classical Model

- Classical model [Goldman, Kearns '95]
 - Hypotheses eliminated upon inconsistency
- Optimal teaching sequence := Set Cover
- Picks "difficult" (confusing?) examples

Learner: Our Robust Model

Classical "**noise-free**" model: Hypotheses **eliminated** upon inconsistency

Our "**robust**" model: Hypotheses **less likely** upon inconsistency

Learner: Our Robust Model

Hypotheses class ${\cal H}$

- Set of functions $h : \mathcal{X} \to \mathbb{R}$
- Label assigned by h is sgn(h(x))

Learner's update

• Given labeled examples $(x_{\tau}, y_{\tau})_{\tau=1,2,...,t}$, learner update weights as

$$P_t(h) \propto P_0(h) \prod_{\substack{y_\tau \neq \text{sgn}(h(x_\tau))}}^{\tau=1,2,\dots,t} l(y_\tau;h,x_\tau)$$
 likelihood function Inconsistent examples

• Learner selects a new hypothesis as $h_t \sim P_t(h)$

Learner: Our Robust Model

Example of a likelihood function

• Given a labeled example (*x*, *y*), define

$$l(y; h, x) = \frac{1}{1 + \exp(-\alpha \cdot y \cdot h(x))}$$

where α is a scaling factor

• $\alpha \rightarrow \infty$ reduces to elimination of inconsistent hypotheses

Teacher: Optimization Problem

Expected error

• Let \overrightarrow{S} be a sequence of examples shown; the expected error rate is

$$\mathbb{E}[\operatorname{err} | \vec{S}] = \sum_{h \in \mathcal{H}} P(h | \vec{S}) \cdot \operatorname{err} (h, h^*)$$

Distribution over learner's h
after showing examples \vec{S}
Fraction of examples
where h and h^* disagree

Optimization problem

• Find smallest sequence of examples to achieve a desired error rate

$$\widehat{S}^{opt} = \underset{\overrightarrow{S}}{\operatorname{argmin}} |\widehat{S}| \quad \text{s.t.} \quad \mathbb{E}[\operatorname{err} | \widehat{S}] \leq \epsilon$$

Teacher: Optimization Problem

- Step 0: Expected error rate is a set function: $\mathbb{E}[\operatorname{err} | \vec{S}] = \mathbb{E}[\operatorname{err} | S]$
- Step 1: Maximize reduction in error

 $R(S) = \mathbb{E}[\operatorname{err} | \emptyset] - \mathbb{E}[\operatorname{err} | S] = \sum_{h \in \mathcal{H}} (P(h | \emptyset) - P(h | S)) \cdot \operatorname{err} (h, h^*)$

Designing submodular surrogate objective

• Step 2: Replace R(.) with a surrogate objective F(.):

$$F(S) = \sum_{h \in \mathcal{H}} (Q(h \mid \emptyset) - Q(h \mid S)) \cdot \operatorname{err}(h, h^*)$$

where $Q(h \mid S)$ is the **unnormalized** posterior

 Theorem: F(.) satisfies submodularity. It is sufficient to optimize F to get guarantees on the original teaching problem.

Teacher: Algorithm

Iterative greedy algorithm

• Input: \mathcal{H} , \mathcal{X} , h^*

Prior $P_0(\mathcal{H})$, learner model parameter α Desired error ϵ

- Initialize: set S ← Ø
- While $F(S) < \mathbb{E}[\operatorname{err} | \emptyset] \epsilon \cdot P_0(h^*)$:
 - Select $x \leftarrow \operatorname{argmax}_{x' \in \mathcal{X}} F(x' \cup S) F(S)$
 - Provide x, $sgn(h^*(x))$ to learner
 - Update $S \leftarrow S \cup \{x\}$

Teacher: Theoretical Guarantees

Approximation guarantees for the general case

Theorem: Fix ϵ . Let $z = P_0(h^*)$ be the prior probability of the target hypothesis. The algorithm terminates after at most $O\left(\left|\vec{S}^{\text{opt}}\right| \cdot \log\left(\frac{2}{\epsilon \cdot z}\right)\right)$ examples such that learner's error is less than ϵ .

Teaching complexity for linear separators

Theorem: Suppose that the hypotheses are hyperplanes and \mathcal{X} can be synthesized. Then, the teaching algorithm achieves learner's error less than ϵ after at most $O\left(\log^2\left(\frac{2}{\epsilon \cdot z}\right)\right)$ examples.

Results (WV): Simulated Learners

- $|\mathcal{X}| = 100, |\mathcal{H}| = 96$
- 100 simulated learners: varying α
 - Teacher considers a learner's model with $\alpha = 2$
- Test phase with 10 unseen examples

Results (WV): Teaching Curriculum

Classical Model Hypotheses eliminated upon inconsistency

Robust Model Hypotheses **less likely** upon inconsistency

Results (WV): Human Learners

- 780 participants from a crowdsourcing platform
 - 60 per control group: (algorithm, length)
- Test phase with 10 unseen images

Setup: Endangered Woodpeckers (WP)

Least concerned

Downy WP

Red-bellied WP

Endangered

Red-cockaded WP

Setup: Endangered Woodpeckers (WP)

- What is suitable ${\mathcal X}$ and ${\mathcal H}$?
- Crowd-embedding [Wellinder et al. NIPS'10]
 - Set of $|\mathcal{X}| = 100$ images from [CUB-200 dataset]
 - Low dimensional embedding using human annotation data

Results (WP): Human Learners

- 520 participants from a crowdsourcing platform
 - 40 per control group: (algorithm, length)
- Test phase with 15 unseen images

Towards Large-scale Multiclass

- Richer interpretable teaching signals
- Adaptive models of teaching
- Limited memory

Machine Teaching: Problem Space

Teacher's knowledge and observability

