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Machine Teaching: Key Components
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• Type and complexity of task

• Type and model of learning agent

• Teacher’s knowledge and observability

Machine Teaching: Problem Space
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Cognitive Model of Skill Acquisition
Cognitive tutors
• Used by millions of students for K-12 education

• https://www.carnegielearning.com/
• https://new.assistments.org/

Bayesian Knowledge Tracing (BKT)
• Introduced by [Corbett, Anderson ’95] 
• Knowledge Components (KC)

• A learning task is associated with a set of skills
• Practicing a skill leads to mastery of that skill
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https://www.carnegielearning.com/
https://new.assistments.org/


Task: Geometry and Algebra
Knowledge components (KCs) and exercises 
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! = #: Congruent triangles

! = $: One variable equations
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Teaching Interaction under BKT
• Each KC ! is associated with a knowledge state ℎ#

• ℎ# = 1 represents that the skill has been mastered
• ℎ# = 0 otherwise

Interaction at time ' = 1, 2, …+
• Denote the value of ℎ# at the end of time ' as ℎ,#
• Initialize ℎ-# for all KCs
• At time ':

• Teacher provides exercise ., associated with KC !
• Learner responds /, ∈ {0, 1} with knowledge ℎ,34#

• Learner updates knowledge from ℎ,34# to ℎ,#
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BKT Learner Model
Learner’s initial knowledge (one parameter per KC)
• Probability of mastery before teaching !"#"$% ≔ !(ℎ)% = 1)

Learner’s response (two parameters per KC)
• Conditional probability of guessing !-./00% ∶= ! 23 = 1 | ℎ356% = 0
• Conditional probability of slipping !08"9% ∶= ! 23 = 0 | ℎ356% = 1

Learner’s update (one parameter per KC)
• Conditional probability of learning !8/:;#% ∶= ! ℎ3% = 1 | ℎ356% = 0
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BKT Learner Model: HMM Representa4on
Hidden Markov Model (HMM) for a single KC !
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BKT Learner Model: DBN Representation
Dynamic Bayesian Network (DBN) for a single KC !
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BKT Learner Model: DBN Representation
Dynamic Bayesian Network for two independent KCs {", $}

&'()*'() &'*'

+'(,- +'()- +'-

+'(,. +'(). +'.

+'()- = 0, *' = " 123456-

+'()- = 1, *' = " 1
+'()- = 0, *' = $ 0
+'()- = 1, *' = $ 1

1 +'- = 1 | +'()- , *'1 &' = 1 | +'()- , +'(). , *'

Exercise * is chosen by teacher 
and takes value {", $}
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*' = " *' = $
+'()- = 0, +'(). = 0 19:3;;- 19:3;;.

+'()- = 1, +'(). = 0 1 − 1;2=>- 19:3;;.

+'()- = 0, +'(). = 1 19:3;;- 1 − 1;2=>.

+'()- = 1, +'(). = 1 1 − 1;2=>- 1 − 1;2=>.



BKT Teacher
Prediction and inference for a single KC !
• Learner’s responses at the end of time ": #$ ≔ {'(, '*, … , '$}
• Predicting learner’s response: - .$/ = 1 | #$3(
• Inferring learner’s knowledge: - 4$/ = 1 | #$ denoted as 5$/

Incremental computations
• Initial 56/ = -7879/ is known
• Compute - .$/ = 1 | #$3( from 5$3(/

• Compute 5$/ from 5$3(/ and '$
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BKT Teacher
Predicting learner’s response
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! "#$ = 1 | (#)* = ! "#$ = 1,,#)*$ = 1 | (#)* + ! "#$ = 1,,#)*$ = 0 | (#)*
= ! "#$ = 1 | ,#)*$ = 1, (#)* / ! ,#)*$ = 1 | (#)*
+ ! "#$ = 1 | ,#)*$ = 0, (#)* / ! ,#)*$ = 0 | (#)*

= ! "#$ = 1 | ,#)*$ = 1 / ! ,#)*$ = 1 | (#)*
+ ! "#$ = 1 | ,#)*$ = 0 / ! ,#)*$ = 0 | (#)*

= (1 − !2345$ ) / 7#)*$ + !89:22$ / (1 − 7#)*$ )

! "#$ = 1 | (#)* = (1 − !2345$ ) / 7#)*$ + !89:22$ / (1 − 7#)*$ )

Derivation:



BKT Teacher
Inferring learner’s knowledge

where !"#$%& is an intermediate quantify computed from "#$%& and '#

Computing ("#$%& by applying Bayes rule
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BKT Teacher
An example of prediction and inference
• Parameters: !"#"$% = 0.5, !*+,-#% = 0.2, !/0+11% = 0.1, !1*"3% = 0.1
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Teaching Process using BKT
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Teacher’s 
algorithm

Application
Parameter fitting using

historic data of students

Learner’s 
model

• Datasets publicly available
• Parameter fitting by standard techniques



BKT: Two Main Research Themes
Improving learner model
• Forgetting
• Individualization per student
• Skill discovery

• exercises to skills mapping
• Inter-skill similarity and prerequisite structure

Designing teaching policies
• When to stop teaching a skill?
• Optimizing the curriculum via planning in DBN 
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Improved Learner Models for BKT
DBN for a single KC ! with forgetting
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Improved Learner Models for BKT
Comparing different models
• BKT: Standard model

• BKT1: One model for all skills
• BKT2: Multiple models, one per skill

• BKT-F: With forgetting
• BKT-I: Individualization per student 
• BKT-S: Skill discovery as part of BKT
• BKT-FIS: Above three extensions combined
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[Khajah, Lindsey, Mozer @ EDM’16]



Deep Knowledge Tracing 
[Piech et al. @ NIPS’15] 

Improved Learner Models for BKT
Comparing different models
• Dataset from 

• # students: 15,900

• # skills: 124  (with multiple exercises per skill)

• # student-exercise attempts: 0.5 million

• Cross-validation by splitting data based on student ids

• Performance metric: AUC (ranging from 0.5 to 1)
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BKT1 BKT2 BKT-F BKT-I BKT-S BKT-FIS Deep BKT

0.67 0.73 0.83 0.785 0.76 0.825 0.86

[Khajah, Lindsey, Mozer @ EDM’16]



Designing Teaching Policies
Much less research on designing teaching policies
• The most popular way of using BKT for teaching is

• STOP teaching skill ! when " #$% = 1 | )$ ≥ 0.95
• Planning techniques

• Faster teaching via POMDP Planning [Rafferty et al. @ CogSci’16] 
• “When to stop” instrucMonal policies with guarantees

• When to stop? Towards Universal InstrucMonal Policies [Käser, Klingler, Gross @ LAK’16] 
• From PredicMve Models to InstrucMonal Policies [Rollinson, Brunskill @ LAK’15] 
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Better predictive models Better instructional policies



Cognitive Models of Skill Acquisition
Summary of BKT
• Well-studied cognitive model, used in real-world applications
• Generic model for complex learning tasks (e.g., learning Algebra)

Limitations of using cognitive models
• Difficult to design optimal teaching policies
• Generic models but might not capture fine-grained task details
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• Type and complexity of task

• Type and model of learning agent

• Teacher’s knowledge and observability

Machine Teaching: Problem Space
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• Type and complexity of task

• Type and model of learning agent

• Teacher’s knowledge and observability

Machine Teaching: Problem Space
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[ICML ’14]
[AAAI ’19]
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Setup: Weevil and Vespula (WV)
Weevil Vespula

f1: head-body 
size ra<o

f2: head-body
color contrast

Hypotheses class ℋ
• Green: target hypothesis ℎ∗
• Blue: ignoring feature f1
• Yellow: ignoring feature f2
• Red: wrongly using feature f2

Feature space and set $
• f1: head-body size ratio
• f2: head-body color contrast



Learner: Classical Model
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+

-

+

• Classical model [Goldman, Kearns ’95]

• Hypotheses eliminated upon inconsistency

• Op>mal teaching sequence := Set Cover

• Picks “difficult” (confusing?) examples

1 2 3 4 5

1 2 3 4 5



Learner: Our Robust Model
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Classical “noise-free” model:
Hypotheses eliminated

upon inconsistency

Our “robust” model:
Hypotheses less likely

upon inconsistency

-

+

+

-

+



Learner: Our Robust Model
Hypotheses class ℋ
• Set of functions ℎ ∶ $ → ℝ
• Label assigned by ℎ is sgn ℎ *

Learner’s update
• Given labeled examples *+, -+ +./,0,…,2, learner update weights as

• Learner selects a new hypothesis as ℎ2~42 ℎ

27

42 ℎ ∝ 46 ℎ 7
89:;<= > ?9

+./,0,…,2
@ -+; ℎ, *+

likelihood function
Inconsistent examples



Learner: Our Robust Model
Example of a likelihood func;on
• Given a labeled example (", $), define

where α is a scaling factor
• ' → ∞ reduces to elimina:on of inconsistent hypotheses
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* $; ℎ, " = .
./012 345657 8



Teacher: Optimization Problem
Expected error
• Let "⃡ be a sequence of examples shown; the expected error rate is

Optimization problem
• Find smallest sequence of examples to achieve a desired error rate
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# err "⃡] = (
)∈ℋ

, ℎ "⃡ . err (ℎ, ℎ∗)

Distribu=on over learner’s ℎ
a?er showing examples "⃡

Frac=on of examples
where ℎ and ℎ∗ disagree

"⃡345 = argmin
;⃡

|"⃡| s.t.   # err "⃡] ≤ >



Teacher: Optimization Problem
• Step 0: Expected error rate is a set function: ! err %⃡] = ! err %]
• Step 1: Maximize reduction in error 

Designing submodular surrogate objective
• Step 2: Replace ((. ) with a surrogate objective , . :

• Theorem: , . satisfies submodularity. It is sufficient to optimize ,
to get guarantees on the original teaching problem.
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( % = ! err ∅] − ! err %] = /
0∈ℋ

3 ℎ ∅ − 3 ℎ % 5 err (ℎ, ℎ∗)

, % = /
0∈ℋ

8 ℎ ∅ − 8 ℎ % 5 err (ℎ, ℎ∗)

where 8 ℎ % is the unnormalized posterior



Teacher: Algorithm
Iterative greedy algorithm
• Input: ℋ,#, ℎ∗

Prior &' ℋ , learner model parameter (
Desired error )

• Initialize: set S ← ∅
• While F(S) < 1 err ∅] − ) 6 &' ℎ∗ :

• Select 7 ← argmax<=∈# ? 7′ ∪ B − ? B
• Provide 7,	sgn ℎ∗ 7 to learner
• Update B ← B ∪ {7}
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Teacher: Theoretical Guarantees
Approximation guarantees for the general case
Theorem: Fix !. Let " = $%(ℎ∗) be the prior probability of the target 
hypothesis. The algorithm terminates after at most * ,⃡-./ 0 log 4

506
examples such that learner’s error is less than !.

Teaching complexity for linear separators
Theorem: Suppose that the hypotheses are hyperplanes and 7 can be 
synthesized. Then, the teaching algorithm achieves learner’s error less 
than ! after at most * log8 4

506 examples.
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Results (WV): Simulated Learners
• ! = 100, ℋ = 96
• 100 simulated learners: varying α

• Teacher considers a learner’s model with α = 2
• Test phase with 10 unseen examples
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Results (WV): Teaching Curriculum
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Results (WV): Human Learners
• 780 participants from a crowdsourcing platform

• 60 per control group: (algorithm, length)

• Test phase with 10 unseen images
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EndangeredLeast concerned

Setup: Endangered Woodpeckers (WP)
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Downy WP Red-bellied WP Red-cockaded WP



Setup: Endangered Woodpeckers (WP)
• What is suitable ! and ℋ? 
• Crowd-embedding [Wellinder et al. NIPS’10] 

• Set of ! = 100 images from [CUB-200 dataset] 
• Low dimensional embedding using human annotaEon data
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Teacher



Results (WP): Human Learners
• 520 participants from a crowdsourcing platform

• 40 per control group: (algorithm, length)

• Test phase with 15 unseen images
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Towards Large-scale Multiclass

• Richer interpretable teaching signals
• Adap2ve models of teaching
• Limited memory
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• Type and complexity of task

• Type and model of learning agent

• Teacher’s knowledge and observability

Machine Teaching: Problem Space
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[ICML ’14]
[AAAI ’19]


